L2-010. 排座位
布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。
输入格式:
输入第一行给出3个正整数:N(<= 100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:“宾客1 宾客2 关系”,其中“关系”为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。
这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。
输出格式:
对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出“No problem”;如果他们之间并不是朋友,但也不敌对,则输出“OK”;如果他们之间有敌对,然而也有共同的朋友,则输出“OK but…”;如果他们之间只有敌对关系,则输出“No way”。
输入样例:
7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2
输出样例:
No problem
OK
OK but…
No way
分析:朋友之间的关系用并查集解决,敌人之间的关系用enemy[a][b] = enemy[b][a] = 1解决,因为朋友之间的朋友也是朋友,是传递关系,而敌人的敌人不一定是敌人,所以只需要用一个二维数组即可标记。
#include <cstdio>
#include <vector>
using namespace std;
vector<int> fri;
int enemy[101][101];
int findfri(int x) {
while(x != fri[x])
x = fri[x];
return x;
}
void Union(int a, int b) {
int fria = findfri(a);
int frib = findfri(b);
if(fria != frib)
fri[fria] = frib;
}
int main() {
int n, m, k, a, b, c;
scanf("%d %d %d", &n, &m, &k);
fri.resize(n + 1);
for(int i = 1; i <= n; i++)
fri[i] = i;
for(int i = 0; i < m; i++) {
scanf("%d %d %d", &a, &b, &c);
if(c == 1)
Union(a, b);
else {
enemy[a][b] = 1;
enemy[b][a] = 1;
}
}
for(int i = 0; i < k; i++) {
scanf("%d %d", &a, &b);
if(findfri(a) == findfri(b) && enemy[a][b] == 0)
printf("No problem\n");
else if(findfri(a) != findfri(b) && enemy[a][b] == 0)
printf("OK\n");
else if(findfri(a) == findfri(b) && enemy[a][b] == 1)
printf("OK but...\n");
else if(enemy[a][b] == 1)
printf("No way\n");
}
return 0;
}