BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

时间:2021-08-24 06:34:21

题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=2734

题解

嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解

神仙题,做法大概就是,构造一个矩阵,左上角是\(1\), 往下每个数都是上面的\(3\)倍,往右每个数都是左面的\(2\)倍,然后在上面跑状压DP,求有多少种选法使得没有两个被选的位置有公共边

然后把左上角改成\(5,7,11...\)分别做一遍,答案相乘即可

嗯,时间复杂度……玄学?

下面给出我的分析:

考虑对一个\(r\)行\(c\)列(\(r<c\))的矩阵进行状压DP,长度为\(r\)的没有连续两个\(1\)的01序列个数是\(Fib(r)=O(1.618^r)\), 故状压DP的复杂度为$$O((1.6182)r\times c)=O(2.618^rc)$$

对于一个左上角是\(i\)的矩阵,行数为\(O(\log_3{\frac{n}{i}})\), 列数为\(O(\log_2{\frac{n}{i}})\), 故进行状压DP的复杂度为$$O(2.618{\log_3{\frac{n}{i}}}\log_2\frac{n}{i})=O((\frac{n}{i}){0.876}\log n)$$

而我们要做的就是对\(i=1,5,7,11...\)求和,那么不妨放缩成对\(i=1,2,...,n\)求和,$$\sum{n}_{i=1}(\frac{n}{i}){0.876}\log n=n^{0.876}\log n\int{n}_{0}x{-0.876}\text{d}x=O(n\log n)$$

代码

#include<cstdio>
#include<cstdlib>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int N = 1e5;
const int P = 1e9+1;
const int lg2N = 17;
const int lg3N = 11;
int cnt[N+3];
llong dp[lg2N+2][(1<<lg3N)+3];
int n;
llong ans; bool isok(int x) {return (x&(x>>1))==0 && (x&(x<<1))==0;}
void updsum(llong &x,llong y) {x = (x+y)%P;} void solve(int x)
{
llong ret = 0ll; int x0 = x;
for(int i=1; x<=n; i++,x*=2)
{
int xx = x; cnt[i] = 0;
for(; xx<=n; cnt[i]++,xx*=3);
for(int j=0; j<(1<<cnt[i]); j++)
{
if(isok(j))
{
if(i==1) {dp[i][j] = 1ll;}
else
{
int jj = ((1<<cnt[i-1])-1)^j;
for(int k=jj; k>=0; k=(k==0?-1:((k-1)&jj)))
{
updsum(dp[i][j],dp[i-1][k]);
}
}
if(x*2>n) {updsum(ret,dp[i][j]);}
}
}
} ans = ans*ret%P;
x = x0;
for(int i=1; x<=n; i++,x*=2)
{
int xx = x,nn = 1;
for(int j=0; j<(1<<cnt[i]); j++)
{
dp[i][j] = 0ll;
}
cnt[i] = 0;
}
} int main()
{
scanf("%d",&n); ans = 1ll;
for(int i=1; i<=n;)
{
solve(i);
if(i%6==1) i+=4;
else i+=2;
}
printf("%lld\n",ans);
return 0;
}