【bzoj3240】 Noi2013—矩阵游戏

时间:2021-03-20 17:30:30

http://www.lydsy.com/JudgeOnline/problem.php?id=3240 (题目链接)

题意$${F[1][1]=1}$$$${F[i][j]=a*F[i][j-1]+b (j!=1)}$$$${F[i][1]=c*F[i-1][m]+d (i!=1)}$$

  求解${F[n][m]}$,${a,b,c,d}$为常数。

Solution

  原来费马小定理对于矩阵乘法同样适用。。设a为一矩阵,p为质数则:

【bzoj3240】 Noi2013—矩阵游戏

  正好这里的模数1000000007为质数,那么把n,m模上(p-1)后进行矩阵快速幂即可。用来优化的矩阵很好构造,记得特判a和c等于1的情况。

细节

  注意如果重载了*,不要弄错了乘法的顺序,因为矩阵乘法是不满足交换律的。

代码

// bzoj3240
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define MOD 1000000007
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std; char s1[1000010],s2[1000010];
LL n,m,a,b,c,d; struct data {
LL x[3][3];
friend data operator * (const data &a,const data &b) {
data tmp;tmp.x[0][1]=tmp.x[0][2]=tmp.x[0][0]=tmp.x[1][0]=tmp.x[2][0]=0;
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++) {
tmp.x[i][j]=0;
for (int k=1;k<=2;k++) tmp.x[i][j]=(tmp.x[i][j]+a.x[i][k]*b.x[k][j])%MOD;
}
return tmp;
}
}A,B,T,ans,res;
void power(data a,int b) {
ans.x[1][1]=1;ans.x[1][2]=0;ans.x[2][1]=0;ans.x[2][2]=1;
while (b) {
if (b&1) ans=a*ans;
b>>=1;
a=a*a;
}
}
int main() {
scanf("%s%s%lld%lld%lld%lld",s1,s2,&a,&b,&c,&d);
A.x[1][1]=a;A.x[1][2]=0;A.x[2][1]=b;A.x[2][2]=1;
B.x[1][1]=c;B.x[1][2]=0;B.x[2][1]=d;B.x[2][2]=1;
T.x[1][1]=1;T.x[1][2]=1;T.x[2][1]=T.x[2][2]=0;
LL P=MOD-1;
if (a==1 && c==1) P=MOD;
int l=strlen(s1);
for (int i=0;i<l;i++) n=(n*10+s1[i]-'0')%P;
l=strlen(s2);
for (int i=0;i<l;i++) m=(m*10+s2[i]-'0')%P;
power(A,m-1);
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++) A.x[i][j]=res.x[i][j]=ans.x[i][j];
A=A*B;
power(A,n-1);
res=ans*res;
res=T*res;
printf("%lld",res.x[1][1]);
return 0;
}