difkstra + 路径输出
Description Problem GToll! RevisitedInput: Standard InputOutput: Standard Output Time Limit: 1 Second Sindbad the Sailor sold 66 silver spoons to the Sultan of Samarkand. The selling was quite easy; but delivering was complicated. The items were transported over land, passing through several towns and villages. Each town and village demanded
Predicting the tolls charged in each village or town is quite simple, but finding the best route (the cheapest route) is a real challenge. The best route depends upon the number of items carried. For numbers up to 20, villages and towns You must write a program to solve Sindbads problem. Given the number of items to be delivered to a certain town or village and a road map, your program must determine the total number of items required at the beginning of the journey that uses a cheapest InputThe input consists of several test cases. Each test case consists of two parts: the roadmap followed by the delivery details. The first line of the roadmap contains an integer n, which is the number of roads in the map (0 <= n). Each of the next n lines contains exactly two letters representing the two endpoints of a road. Following the roadmap is a single line for the delivery details. This line consists of three things: an integer p (0 < p < 1000000000) for the number of items that must be delivered, a letter for the starting place, and a letter for the The last test case is followed by a line containing the number -1. OutputThe output consists of three lines for each test case. First line displays the case number, second line shows the number of items required at the beginning of the journey and third line shows the path according to the problem statement above. Actually, the Sample Input Output for Sample Input
Orignal Problem: ACM ICPC World Finals 2003, Enhanced by SM, Member of EPP |
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; typedef long long int LL;
const LL INF=4557430888798830399LL; int getID(char c)
{
if(c>='A'&&c<='Z')
return c-'A'+1;
else return c-'a'+27;
} struct Edge
{
int to,next;
}edge[6000]; int Adj[60],Size=0; void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
} void Add_Edge(int u,int v)
{
edge[Size].to=v;
edge[Size].next=Adj[u];
Adj[u]=Size++;
} int n,S,E;
LL dist[60],toll;
bool used[60]; LL get_toll(int E,LL toll)
{
if(E>=27)
{
return toll+1LL;
}
else
{
LL t=toll/19LL;
if(toll%19LL) t++;
return toll+t;
}
} int dijkstra()
{
memset(dist,63,sizeof(dist));
memset(used,false,sizeof(used));
dist[E]=toll;
for(int j=1;j<=60;j++)
{
int mark=-1;
LL mindist=INF;
for(int i=1;i<=52;i++)
{
if(used[i]) continue;
if(dist[i]<mindist)
{
mark=i; mindist=dist[i];
}
}
if(mark==-1) break;
used[mark]=true;
LL temp=get_toll(mark,dist[mark]);
for(int i=Adj[mark];~i;i=edge[i].next)
{
int v=edge[i].to;
if(used[v]) continue;
if(dist[v]>temp)
dist[v]=temp;
}
}
} vector<int> road; LL get_down(int E,LL toll)
{
if(E>=27)
{
return 1;
}
else
{
LL t=toll/20LL;
if(toll%20LL) t++;
return t;
}
} void dfs(int u,int fa)
{
road.push_back(u);
int temp=9999;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
if(dist[u]-get_down(v,dist[u])==dist[v])
{
temp=min(temp,v);
}
}
if(temp!=9999)
dfs(temp,u);
} int main()
{
int cas=1;
while(scanf("%d",&n)!=EOF&&~n)
{
init();
char opp[2][30];
for(int i=0;i<n;i++)
{
scanf("%s%s",opp[0],opp[1]);
int u=getID(opp[0][0]);
int v=getID(opp[1][0]);
Add_Edge(u,v);
Add_Edge(v,u);
}
scanf("%lld%s%s",&toll,opp[0],opp[1]);
S=getID(opp[0][0]); E=getID(opp[1][0]);
dijkstra();
printf("Case %d:\n%lld\n",cas++,dist[S]);
road.clear();
dfs(S,S);
for(int i=0,sz=road.size();i<sz;i++)
{
if(i) putchar('-');
char xxx;
if(road[i]<=26)
xxx='A'+road[i]-1;
else
{
road[i]-=27;
xxx='a'+road[i];
}
printf("%c",xxx);
}
putchar(10);
}
return 0;
}