HDU - 6304(2018 Multi-University Training Contest 1) Chiaki Sequence Revisited(数学+思维)

时间:2022-06-27 20:41:24

http://acm.hdu.edu.cn/showproblem.php?pid=6304

题意

给出一个数列的定义,a[1]=a[2]=1,a[n]=a[n-a[n-1]]+a[n-1-a[n-2]](n>=3)。求前n项和,n<=1e18。

分析

一看就是得打表找规律或推公式的题目。

先把a[i]打出来: 1 1 2 2 3 4 4 4 5 6 6...

乍眼一看每个数字出现的次数有点意思,于是打出每个数出现次数:

数值   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

次数   2  2  1  3  1  2  1  4  1   2    1    3    1    2    1    5

感觉第一个1很不和谐啊,先忽略这个1看看:

数值   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

次数   1  2  1  3  1  2  1  4  1   2    1    3    1    2    1    5

可以看到前2^i个数的出现次数是由前2^(i-1)个数复制两次,并把2^i的次数+1得到的。

这样就得到数值出现次数的规律了,设cnt[i]为前2^i个数的次数之和,那么cnt[i]=2*cnt[i-1]+1。

有了cnt[i],对于一个下标n,可以求出a[n]的值,相反也可以求出值为a[n]的第一个位置。

然后怎么求前n项和呢?把相同出现次数的值输出看看:

1-- 1,3,5,7,9....

2-- 2,6,10,14...

3-- 4,12,20,28...

4-- 8,24,40,56...

....

很明显的规律,对于次数k,对应数值形成一个首项为2^(k-1),公差为2^k的等差数列。这个等差数列的每个值都出现k次。

所以,可以枚举次数,计算以a[n]为上界的项数,再把这个等差数列的和*次数加到答案中。

需要注意,计算等差数列时不能把a[n]算进去,因为a[n]出现的次数在n的限制下是不完全的,需要另外计算,这时就用到上面计算的a[n]出现的第一个位置了,由此算出a[n]实际出现的次数,再加到答案中。

由于数据是ll级别,出现相乘时不要忘记先模一下。

其它细节看代码。

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;
const ll mod = 1e9 + ; ll cnt[],p[];
//预处理2^i和cnt[i]
void init(){
cnt[]=p[]=;
for(int i=;i<=;i++) cnt[i]=*cnt[i-]+,p[i]=*p[i-];
}
//计算a[n]的数值
ll caln(ll n){
if(n==) return ;//特殊处理
n--;//由于规律从实际的第二个开始计算
ll an = ;
for(int i=;i>=;i--){
while(cnt[i]<=n){
n-=cnt[i];
an+=p[i];
}
}
return an;
}
//根据a[n]计算最早出现的位置
ll gps(ll an){
if(an==) return ;
an--; //同上
ll pos=;
for(int i=;i>=;i--){
while(p[i]<=an){
an-=p[i];
pos+=cnt[i];
}
}
return pos+;
}
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int T;
ll n;
scanf("%d",&T);
init();
ll _inv = ;//2的逆元
while(T--){
scanf("%lld",&n);
ll an = caln(n);
ll cnt = n - gps(an);//a[n]出现的实际次数
ll ans = ;
for(int i=;p[i-]<=an;i++){//枚举次数,终结条件为某个等差数列的首项大于a[n]
ll x1 = p[i-]; //首项
ll d = p[i]; //公差
//项数。注意,正常的项数应该是((an-x1)/d+1),但这里不能保证a[n]全部出现了,
//所以当((an-x1)%d==0)时说明a[n]位于当前的等差数列中,需要根据实际个数来计算,于是不+1
ll num = ((an-x1)%d==)?((an-x1)/d):((an-x1)/d+);
ll xn = x1 + (num-)*d; //尾项
ll sum = (x1%mod+xn%mod)%mod*(num%mod)%mod*_inv%mod; //等差数列前num项和
ans = (ans+i*sum%mod)%mod; //加入答案,共出现i次
if((an-x1)%d==)
ans=(ans+cnt*(an%mod)%mod)%mod; //a[n]位于此数列,特别计算一下。
}
printf("%lld\n",ans+);//由于计算中忽略了第一项1,最后加上
}
return ;
}