Segment set(线段并查集)

时间:2021-10-17 23:14:48

Segment set

Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 12   Accepted Submission(s) : 4

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set.

Segment set(线段并查集)

Input

In the first line there is an integer t - the number of test
case. For each test case in first line there is an integer n (n<=1000) - the
number of commands.

There are two different commands described in
different format shown below:

P x1 y1 x2 y2 - paint a segment whose
coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of
the segment set which contains the k-th segment.

k is between 1 and the
number of segments in the moment. There is no segment in the plane at first, so
the first command is always a P-command.

Output

For each Q-command, output the answer. There is a blank line
between test cases.

Sample Input

1
10
P 1.00 1.00 4.00 2.00
P 1.00 -2.00 8.00 4.00
Q 1
P 2.00 3.00 3.00 1.00
Q 1
Q 3
P 1.00 4.00 8.00 2.00
Q 2
P 3.00 3.00 6.00 -2.00
Q 5

Sample Output

1
2
2
2
5
http://pic002.cnblogs.com/images/2011/287127/2011080416290750.jpg
做之前学习一下
 先进行快速排斥实验;再进行跨立实验
Segment set(线段并查集)
 
 
Segment set(线段并查集)

如果  p1 × p2 为正数,则相对原点(0,0)来说, p1 p 2 的顺时针方向; 如果p 1  × p2为负数,则p 1 在p 2 的逆时针方向。如果p 1× p =0,则p 1和p 2 模相等且共线,方向相同或相反。

#include <iostream>
#include<algorithm>
using namespace std;
struct node
{
double x,y; }dian1[],dian2[];
int par[];
int num[];
int findi(int x)
{
if(par[x]==x)
return x;
return par[x]=findi(par[x]);
}
void unioni(int x,int y)
{
int xx=findi(x);
int yy=findi(y);
if(xx!=yy)
{
par[xx]=yy;
num[yy]=num[xx]+num[yy]; }
}
double diancheng(node a,node b,node c)
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int panduan(node a,node b,node c, node d)
{
int minpx=min(a.x,b.x);
int minpy=min(a.y,b.y);
int minqx=min(c.x,d.x);
int minqy=min(c.y,d.y);
int minux=max(minpx,minqx);
int minuy=max(minpy,minqy); int maxpx=max(a.x,b.x);
int maxpy=max(a.y,b.y);
int maxqx=max(c.x,d.x);
int maxqy=max(c.y,d.y);
int maxux=min(maxpx,maxqx);
int maxuy=min(maxpy,maxqy); if(minux>maxux||minuy>maxuy)
return ;
if(diancheng(a,b,c)*diancheng(a,b,d)>)
return ;
if(diancheng(c,d,b)*diancheng(c,d,a)>)
return ;
return ; }
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=;i<=n;i++)
{
par[i]=i;
num[i]=;
}
char a;
int k=;
while(n--)
{
cin>>a;
if(a=='P')
{
cin>>dian1[k].x>>dian1[k].y>>dian2[k].x>>dian2[k].y;
for(int i=;i<k;i++)
{
if(panduan(dian1[i],dian2[i],dian1[k],dian2[k]))
{
unioni(i,k);
}
}
k++;
}
else
{
int p;
cin>>p;
int pp=findi(p);
cout<<num[pp]<<endl;
}
}
if(T)
cout<<endl;
}
return ;
}

一开始没明白为什么跨立实验就可以解决 为什么要用快速排斥

应为点乘等于0;有3种可能。

Segment set(线段并查集)

而通过了快速排斥试验,所以上图左边的情况是不可能出现的,只会出现右边的两种情况。

左右2种都是 满足相交