Segment set
Time Limit : 3000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 12 Accepted Submission(s) : 4
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set.
Input
In the first line there is an integer t - the number of test
case. For each test case in first line there is an integer n (n<=1000) - the
number of commands.
case. For each test case in first line there is an integer n (n<=1000) - the
number of commands.
There are two different commands described in
different format shown below:
P x1 y1 x2 y2 - paint a segment whose
coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of
the segment set which contains the k-th segment.
k is between 1 and the
number of segments in the moment. There is no segment in the plane at first, so
the first command is always a P-command.
Output
For each Q-command, output the answer. There is a blank line
between test cases.
between test cases.
Sample Input
1
10
P 1.00 1.00 4.00 2.00
P 1.00 -2.00 8.00 4.00
Q 1
P 2.00 3.00 3.00 1.00
Q 1
Q 3
P 1.00 4.00 8.00 2.00
Q 2
P 3.00 3.00 6.00 -2.00
Q 5
Sample Output
1
2
2
2
5
http://pic002.cnblogs.com/images/2011/287127/2011080416290750.jpg
做之前学习一下
先进行快速排斥实验;再进行跨立实验
如果 p1 × p2 为正数,则相对原点(0,0)来说, p1 在p 2 的顺时针方向; 如果p 1 × p2为负数,则p 1 在p 2 的逆时针方向。如果p 1× p2 =0,则p 1和p 2 模相等且共线,方向相同或相反。
#include <iostream>
#include<algorithm>
using namespace std;
struct node
{
double x,y; }dian1[],dian2[];
int par[];
int num[];
int findi(int x)
{
if(par[x]==x)
return x;
return par[x]=findi(par[x]);
}
void unioni(int x,int y)
{
int xx=findi(x);
int yy=findi(y);
if(xx!=yy)
{
par[xx]=yy;
num[yy]=num[xx]+num[yy]; }
}
double diancheng(node a,node b,node c)
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int panduan(node a,node b,node c, node d)
{
int minpx=min(a.x,b.x);
int minpy=min(a.y,b.y);
int minqx=min(c.x,d.x);
int minqy=min(c.y,d.y);
int minux=max(minpx,minqx);
int minuy=max(minpy,minqy); int maxpx=max(a.x,b.x);
int maxpy=max(a.y,b.y);
int maxqx=max(c.x,d.x);
int maxqy=max(c.y,d.y);
int maxux=min(maxpx,maxqx);
int maxuy=min(maxpy,maxqy); if(minux>maxux||minuy>maxuy)
return ;
if(diancheng(a,b,c)*diancheng(a,b,d)>)
return ;
if(diancheng(c,d,b)*diancheng(c,d,a)>)
return ;
return ; }
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=;i<=n;i++)
{
par[i]=i;
num[i]=;
}
char a;
int k=;
while(n--)
{
cin>>a;
if(a=='P')
{
cin>>dian1[k].x>>dian1[k].y>>dian2[k].x>>dian2[k].y;
for(int i=;i<k;i++)
{
if(panduan(dian1[i],dian2[i],dian1[k],dian2[k]))
{
unioni(i,k);
}
}
k++;
}
else
{
int p;
cin>>p;
int pp=findi(p);
cout<<num[pp]<<endl;
}
}
if(T)
cout<<endl;
}
return ;
}
一开始没明白为什么跨立实验就可以解决 为什么要用快速排斥
应为点乘等于0;有3种可能。
而通过了快速排斥试验,所以上图左边的情况是不可能出现的,只会出现右边的两种情况。
左右2种都是 满足相交