【洛谷】4317:花神的数论题【数位DP】

时间:2022-11-09 23:20:20

P4317 花神的数论题

题目背景

众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。

题目描述

话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。 花神的题目是这样的:设 sum(i)表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你 ∏i=1N​sum(i) ,也就是sum(1)∼sum(N)的乘积。

输入输出格式

输入格式:

一个正整数 N。

输出格式:

一个数,答案模 10000007 的值。

输入输出样例

输入样例#1: 复制
3
输出样例#1: 复制
2

说明

对于 100% 的数据,N≤10^15


Solution

数位DP

但是不是直接处理出乘积,而是枚举$i$,处理出有多少个数恰好有$i$个1.

最后直接用快速幂乘起来即可。

Code

#include<bits/stdc++.h>
#define LL long long
#define mod 10000007
using namespace std; LL n; LL mpow(LL a, LL b) {
LL res = ;
for(; b; b >>= , a = a * a % mod)
if(b & ) res = res * a % mod;
return res;
} LL dp[][][][];
int num[];
LL dfs(int dep, int up, int sum, int d) {
if(!dep && sum == d) return dp[dep][up][sum][d] = ;
if(!dep) return dp[dep][up][sum][d] = ;
if(~dp[dep][up][sum][d]) return dp[dep][up][sum][d];
int tot = up ? num[dep] : ;
LL tmp = ;
for(int i = ; i <= tot; i ++)
tmp += dfs(dep - , up && i == tot, sum + i, d);
return dp[dep][up][sum][d] = tmp;
} LL ans[];
LL cot(LL x) {
int t = ;
memset(num, , sizeof(num));
while(x) {
num[++t] = x % ;
x >>= ;
}
for(int i = ; i <= ; i ++) {
memset(dp, -, sizeof(dp));
ans[i] = dfs(t, , , i);
}
LL res = ;
for(int i = ; i <= ; i ++)
res = (res * mpow(i, ans[i])) % mod;
return res;
} int main() {
scanf("%lld", &n);
printf("%lld", cot(n));
return ;
}