BZOJ 3209: 花神的数论题【数位dp】

时间:2022-02-09 23:19:55

Description

背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

Sample Input

样例输入一
3

Sample Output

样例输出一
2

HINT

对于样例一,1*1*2=2;

数据范围与约定

对于 100% 的数据,N≤10^15

思路:数位dp,计算小于n并且sum(i)=k的i有多少个,设为u,则答案为pow(k,u),然后枚举k即可

#include<cstdio>

#include<iostream>

#include<cstring>

#include<map>

#define maxn 1000005

#define MOD 10000007

using namespace std;

long long num[maxn],h=0,dp[100][100][100][2];

long long dfs(long long pos,long long need,long long now,long long limit)

{

if(pos==0)return now==need;

int tmp=limit?num[pos]:1;

long long ans=0;

if(!limit&&dp[pos][need][now][limit]!=-1)

return dp[pos][need][now][limit];

for(int i=0;i<=tmp;i++)

{

ans=(ans+dfs(pos-1,need,now+i,limit&&(i==tmp)));

}

if (!limit)

dp[pos][need][now][limit]=ans;

return ans;

}

long long mpow(long long a,long long n)

{

long long ans=1;

a%=MOD;

while (n)

{

if (n%2) ans=(ans%MOD)*(a%MOD)%MOD;

n/=2;

a=(a%MOD)*(a%MOD)%MOD;

}

return ans;

}

int main()

{

long long n;

memset(dp,-1,sizeof(dp));

while(scanf("%lld",&n)!=EOF)

{

long long ans=1;h=0;

if(n==0){printf("0\n");continue;}

while(n>0){num[++h]=n&1;n>>=1;}

for(int i=1;i<=h;i++)

{

long long u=dfs(h,i,0,1);

long long v=mpow((long long)i,u%9988440+9988440);

ans=((ans%MOD)*(v%MOD))%MOD;

if(ans==6296768)

{

int zz=1;

}

}

printf("%lld\n",ans);

}

return 0;

}