思路
又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数:
\[ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i}
\]
\]
前面可以枚举,考虑后面那东西怎么求。
我们不知道为什么但就是考虑DP:设:
\[dn_{x,t}=\sum_{y\in x} {dis(x,y) \choose t}\\
up_{x,t}=\sum_{y\notin x} {dis(x,y) \choose t}
\]
up_{x,t}=\sum_{y\notin x} {dis(x,y) \choose t}
\]
其中\(y\in x\)表示\(y\)在\(x\)的子树内。
显然\(dn\)比较好求,我们先搞\(dn\)。
\[\begin{align*}
dn_{x,t}&=\sum_{y\in x} {dis(x,y) \choose t}\\
&=[t=0]+\sum_v \sum_{y\in v} {dis(v,y)+1 \choose t}\\
&=[t=0]+\sum_v \sum_{y\in v} \left( {dis(v,y) \choose t} + {dis(v,y) \choose t-1} \right)\\
&=[t=0]+\sum_v (dp_{v,t} + dp_{v,t-1})
\end{align*}
\]
dn_{x,t}&=\sum_{y\in x} {dis(x,y) \choose t}\\
&=[t=0]+\sum_v \sum_{y\in v} {dis(v,y)+1 \choose t}\\
&=[t=0]+\sum_v \sum_{y\in v} \left( {dis(v,y) \choose t} + {dis(v,y) \choose t-1} \right)\\
&=[t=0]+\sum_v (dp_{v,t} + dp_{v,t-1})
\end{align*}
\]
接下来是\(up\)。
\[\begin{align*}
up_{x,t}&=\sum_{y\notin x} {dis(x,y) \choose t}\\
&=\sum_{y\notin fa} {dis(fa,y)+1\choose t} +\sum_{y\in fa} {dis(fa,y)+1\choose t}-\sum_{y\in x} {dis(x,y)+2\choose t}\\
&=up_{fa,t}+up_{fa,t-1}+dn_{fa,t}+dn_{fa,t-1}-dn_{x,t}-2dn_{x,t-1}-dn_{x,t-2}
\end{align*}
\]
up_{x,t}&=\sum_{y\notin x} {dis(x,y) \choose t}\\
&=\sum_{y\notin fa} {dis(fa,y)+1\choose t} +\sum_{y\in fa} {dis(fa,y)+1\choose t}-\sum_{y\in x} {dis(x,y)+2\choose t}\\
&=up_{fa,t}+up_{fa,t-1}+dn_{fa,t}+dn_{fa,t-1}-dn_{x,t}-2dn_{x,t-1}-dn_{x,t-2}
\end{align*}
\]
特判一下\(up_{1,t}=0\)即可。
至此,问题结束。
复杂度\(O(nk)\)。
代码
推了那么长的式子,代码其实超短。
#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define sz 50505
#define mod 10007
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
template<typename T>inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
template<typename T>inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n,K;
struct hh{int t,nxt;}edge[sz<<1];
int head[sz],ecnt;
void make_edge(int f,int t)
{
edge[++ecnt]=(hh){t,head[f]};
head[f]=ecnt;
edge[++ecnt]=(hh){f,head[t]};
head[t]=ecnt;
}
ll up[sz][233],dn[sz][233];
#define v edge[i].t
void dfs1(int x,int fa)
{
dn[x][0]=1;
go(x) if (v!=fa)
{
dfs1(v,x);
(dn[x][0]+=dn[v][0])%=mod;
rep(j,1,K) (dn[x][j]+=dn[v][j]+dn[v][j-1])%=mod;
}
}
void dfs2(int x,int fa)
{
if (x!=1)
{
up[x][0]=(up[fa][0]+dn[fa][0]-dn[x][0]+mod)%mod;
up[x][1]=(up[fa][1]+up[fa][0]+dn[fa][1]+dn[fa][0]-dn[x][1]-2*dn[x][0]+mod*3)%mod;
rep(i,2,K) up[x][i]=(up[fa][i]+up[fa][i-1]+dn[fa][i]+dn[fa][i-1]-dn[x][i]-2*dn[x][i-1]-dn[x][i-2]+mod*4)%mod;
}
go(x) if (v!=fa) dfs2(v,x);
}
#undef v
ll S[233][233];
ll fac[233];
int main()
{
file();
int x,y;
read(n,K);
rep(i,1,n-1) read(x,y),make_edge(x,y);
dfs1(1,0);dfs2(1,0);
fac[0]=1;rep(i,1,K) fac[i]=fac[i-1]*i%mod;
S[0][0]=1;
rep(i,1,K)
rep(j,1,K)
S[i][j]=(S[i-1][j-1]+1ll*j*S[i-1][j]%mod)%mod;
rep(i,1,n)
{
ll ans=0;
rep(j,0,K) ans=(ans+fac[j]*S[K][j]%mod*(up[i][j]+dn[i][j])%mod)%mod;
printf("%lld\n",ans);
}
return 0;
}