文件名称:基于自然最近邻相似图的谱聚类
文件大小:1.62MB
文件格式:PDF
更新时间:2024-05-20 06:57:14
谱聚类 自然最近邻 相似图
传统谱聚类算法经常在处理一些结构复杂的数据集时效果不太理想,并且其相似度矩阵构造时参数的选取往往需要依靠多次实验及个人经验。在这种情况下,提出一种基于自然最近邻相似图的谱聚类(NSG-SC)算法。自然最近邻是一种新颖的最近邻概念,可以有效地避免K最近邻以及ε-最近邻方法需要人为设置参数的缺点。该算法构造相似度矩阵时依靠数据集自身的特性进行搜索,避免了参数选取不当以及离散点所带来的影响,更加真实地反映了数据集的结构关系。实验结果表明,提出的NSG-SC算法具有可行性和有效性。