PyTorch-Adversarial-Attack-Baselines-for-ImageNet-CIFAR10-MNIST:ImageNet,CIFAR10和MNIST的PyTorch对抗性攻击基准(最先进的攻击比较)

时间:2024-03-27 21:44:49
【文件属性】:

文件名称:PyTorch-Adversarial-Attack-Baselines-for-ImageNet-CIFAR10-MNIST:ImageNet,CIFAR10和MNIST的PyTorch对抗性攻击基准(最先进的攻击比较)

文件大小:629.38MB

文件格式:ZIP

更新时间:2024-03-27 21:44:49

deep-learning pytorch mnist imagenet cifar10

针对ImageNet,CIFAR10和MNIST的PyTorch对抗性攻击基准 ImageNet,CIFAR10和MNIST的PyTorch对抗性攻击基准(最先进的攻击比较) 该存储库提供了用于评估各种对抗攻击的简单PyTorch实现。 该存储库显示每个数据集的最新攻击成功率。 该存储库利用了攻击库,例如 , 等。 如果您对此存储库有疑问,请给我发送电子邮件( )或提出问题。 影像网 该存储库提供了一个包含1,000个类的小型ImageNet验证数据集。 该数据集每个班级有5张图像(总计5,000张图像)。 这是ImageNet验证数据集的子集。 对抗示例的大小:224 x 224 x 3(150,528个参数) 1. Linf FGSM(非目标) Advertorch和Foolbox显示几乎相同的结果。 Epsilon大小 1/255 2/255 4/255 8/25


网友评论