给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected)。如下图中,任意两个顶点都是互相可达的。
对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)或广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的。
而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断。如下图中,如果从顶点 0 开始遍历则可判断是强连通的,而如果从其它顶点开始遍历则无法抵达所有节点。
那么,该如何判断有向图的强连通性呢?
实际上,解决该问题的较好的方式就是使用强连通分支算法(SCC:Strongly Connected Components),可以在 O(V+E) 时间内找到所有的 SCC。如果 SCC 的数量是 1,则说明整个图是强连通的。
有向图 G = (V, E) 的一个强连通分支是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的。
实现 SCC 的一种算法就是 Kosaraju 算法。Kosaraju 算法基于深度优先搜索(DFS),并对图进行两次 DFS 遍历,算法步骤如下:
- 初始化设置所有的顶点为未访问的;
- 从任意顶点 v 开始进行 DFS 遍历,如果遍历结果没有访问到所有顶点,则说明图不是强连通的;
- 置换整个图(Reverse Graph);
- 设置置换后的图中的所有顶点为未访问过的;
- 从与步骤 2 中相同的顶点 v 开始做 DFS 遍历,如果遍历没有访问到所有顶点,则说明图不是强连通的,否则说明图是强连通的。
Kosaraju 算法的思想就是,如果从顶点 v 可以抵达所有顶点,并且所有顶点都可以抵达 v,则说明图是强连通的。
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); Console.WriteLine("Is graph strongly connected: {0}", g.Kosaraju()); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } } public IEnumerable<Edge> Edges
{
get { return _adjacentEdges.Values.SelectMany(e => e); }
} public int EdgeCount { get { return this.Edges.Count(); } } public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public bool Kosaraju()
{
// Step 1: Mark all the vertices as not visited (For first DFS)
bool[] visited = new bool[VertexCount];
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 2: Do DFS traversal starting from first vertex.
DFS(, visited); // If DFS traversal doesn’t visit all vertices, then return false.
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; // Step 3: Create a reversed graph
Graph reversedGraph = Transpose(); // Step 4: Mark all the vertices as not visited (For second DFS)
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 5: Do DFS for reversed graph starting from first vertex.
// Staring Vertex must be same starting point of first DFS
reversedGraph.DFS(, visited); // If all vertices are not visited in second DFS, then
// return false
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; return true;
} void DFS(int v, bool[] visited)
{
visited[v] = true; if (_adjacentEdges.ContainsKey(v))
{
foreach (var edge in _adjacentEdges[v])
{
if (!visited[edge.End])
DFS(edge.End, visited);
}
}
} Graph Transpose()
{
Graph g = new Graph(this.VertexCount); foreach (var edge in this.Edges)
{
g.AddEdge(edge.End, edge.Begin, edge.Weight);
} return g;
}
}
}
}
参考资料
- Connectivity in a directed graph
- Strongly Connected Components
- Tarjan's Algorithm to find Strongly Connected Components
本篇文章《Kosaraju 算法检测有向图的强连通性》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。