问题描述:有n个矩阵,每个矩阵可以用两个整数a,b来表示 ,表示他的长和宽,矩阵X (a,b) 可以 嵌套 到Y (c,d) 里面当且仅当 a < c && b < d || a < d && b < c . 选出最多这种矩阵。先输出最多的数量,在输出最小字典序路径。
问题分析:本题是DAG(有向无环图)最长路问题,设d[i]为以i结尾的最长链的长度,则状态转移方程为:d[i]=max{0,d[j]|矩形j可以嵌套在矩形i中}+1 ;这里用map[i][j]存储i可嵌入j中
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 1000+5 class Rect{
public:
int length;
int width;
};
bool ok(Rect& a,Rect& b){ //嵌套关系判定函数
return (a.length<b.length && a.width<b.width)
||(a.length<b.width && a.width<b.length);
} int d[maxn],n,map[maxn][maxn]; //d[]用来存储以i结尾的最大长度,map[i][j]表示i可嵌套在j中
Rect rect[maxn]; int dfs(int cur) //深搜,记忆化搜索
{
if( d[cur] > ) return d[cur];//已经找过的直接输出
d[cur] = ; //没找的先付初值1,然后深搜寻找
for(int i=;i<=n;i++)
{
if( map[cur][i] && d[cur] < dfs(i)+)
{
d[cur] = dfs(i)+;
}
}
return d[cur];
}
void out(int i) //反向追踪找到选取图形的标号
{
cout << i << " ";
for(int j=;j<=n;j++)
{
if( map[i][j] && d[i] == d[j]+)
{
out(j);
break;
}
}
} int main(){ for(;cin>>n && n;){ int i,j; for(i=;i<=n;i++){ //输入
cin>>rect[i].length>>rect[i].width;
} memset(map,,sizeof(map)); //构造一个嵌套关系的邻接矩阵
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(ok(rect[i],rect[j]))
map[i][j]=; memset(d,,sizeof(d)); //深搜记忆化完成d[]表
for(i=;i<=n;i++){
dfs(i);
} int max=,ds; //找出d[]的最大值并用ds存储尾链位置
for(i=;i<=n;i++){
if(max<d[i]){
max=d[i];
ds=i;
}
} cout<<max<<'\n';
out(ds);cout<<'\n';
}
}