2014 Super Training #2 F The Bridges of Kolsberg --DP

时间:2021-05-06 10:39:27

原题:UVA 1172  http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3613

动态规划问题。

定义: dp[i] = 右岸前i个村庄(m岸)能够与左岸(n岸)不交叉匹配的最大权值和最小桥数 (用pair<int,int> 维护两个值)

方程:

dp[i].first = max(dp[i].first,dp[i-1].first(i>=1)+cost1[i]+cost2[j])   when 左岸的i与右岸的j相匹配

dp[i].second = dp[i-1].second(i>=1)+1 (if 上面dp[i].first更小)

从后往前枚举,然后从前往后更新。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <map>
using namespace std;
#define N 1007 string os1[N],os2[N];
int osind1[N],osind2[N];
int cost1[N],cost2[N];
pair<int,int> dp[N];
map<string,int> mp; int main()
{
int t,i,j,n,m;
int now;
string tmp;
scanf("%d",&t);
while(t--)
{
now = ;
mp.clear();
scanf("%d",&n);
for(i=;i<=n;i++)
{
cin>>tmp>>os1[i]>>cost1[i];
if(!mp[os1[i]])
mp[os1[i]] = now++;
osind1[i] = mp[os1[i]];
}
scanf("%d",&m);
for(i=;i<=m;i++)
{
cin>>tmp>>os2[i]>>cost2[i];
if(!mp[os2[i]])
mp[os2[i]] = now++;
osind2[i] = mp[os2[i]];
}
int maxi = max(n,m);
for(i=;i<=maxi;i++)
dp[i] = make_pair(,);
for(i=;i<=n;i++)
{
for(j=m;j>=;j--)
{
if(osind1[i] != osind2[j])
continue;
int k,num;
if(j >= )
{
k = dp[j-].first + cost1[i] + cost2[j];
num = dp[j-].second + ;
}
else
{
k = cost1[i] + cost2[j];
num = ;
}
if(dp[j].first < k)
{
dp[j].first = k;
dp[j].second = num;
}
else if(dp[j].first == k)
dp[j].second = min(dp[j].second,num);
}
for(j=;j<=m;j++)
{
if(dp[j].first < dp[j-].first)
dp[j] = dp[j-];
else if(dp[j].first == dp[j-].first && dp[j].second > dp[j-].second)
dp[j] = dp[j-];
}
}
printf("%d %d\n",dp[m].first,dp[m].second);
}
return ;
}