DenseNet笔记

时间:2022-06-18 09:47:58

一、DenseNet的优点

  • 减轻梯度消失问题
  • 加强特征的传递
  • 充分利用特征
  • 减少了参数量

二、网络结构公式

对于每一个DenseBlock中的每一个层,

DenseNet笔记

[x0,x1,…,xl-1]表示将0到l-1层的输出feature map做concatenation。concatenation是做通道的合并,就像Inception那样。而前面resnet是做值的相加,通道数是不变的。Hl包括BN,ReLU和3*3的卷积。

而在ResNet中的每一个残差块,

DenseNet笔记

三、Growth Rate

指的是DenseBlock中每一个非线性变换Hl(BN,ReLU和3*3的卷积)的输出,这个输出与输入Concate.一个DenseBlock的输出=输入+Hl数×growth_rate。在要给DenseBlock中,Feature Map的size保持不变。

四、Bottleneck

这个组件位于DenseBlock中,当一个DenseBlock包含的非线性变换Hl较多时(如nHl=48),此时的grow rate为k=32,那么第48层的输入变成input+47×32,这是一个很大的数,如果不用bottleneck进行降维,那么计算量很大。

因此,使用4×k个1x1卷积进行降维。使得3×3线性变换的输入通道变成4×k。同时,bottleneck起到特征融合的效果。

五、Transition

这个组件位于DenseBlock之间,使用1×1卷积进行降维,降维后的通道数为input_channels*reduction. 参数reduction默认为0.5,后接池化层进行下采样,减小Feature Map 分辨率。

六、网络结构

DenseNet笔记

DenseNet笔记

 

七、代码实现(Pytorch)

import torch
import torch.nn as nn
import torch.nn.functional as F
import math class Bottleneck(nn.Module):
def __init__(self,nChannels,growthRate):
super(Bottleneck,self).__init__()
interChannels = 4*growthRate
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels,interChannels,kernel_size=1,
stride=1,bias=False)
self.bn2 = nn.BatchNorm2d(interChannels)
self.conv2 = nn.Conv2d(interChannels,growthRate,kernel_size=3,
stride=1,padding=1,bias=False) def forward(self, *input):
#先进行BN(pytorch的BN已经包含了Scale),然后进行relu,conv1起到bottleneck的作用
out = self.conv1(F.relu(self.bn1(input)))
out = self.conv2(F.relu(self.bn2(out)))
out = torch.cat(input,out)
return out class SingleLayer(nn.Module):
def __init__(self,nChannels,growthRate):
super(SingleLayer,self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels,growthRate,kernel_size=3,
padding=1,bias=False) def forward(self, *input):
out = self.conv1(F.relu(self.bn1(input)))
out = torch.cat(input,out)
return out class Transition(nn.Module):
def __int__(self,nChannels,nOutChannels):
super(Transition,self).__init__() self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels,nOutChannels,kernel_size=1,bias=False) def forward(self, *input):
out = self.conv1(F.relu(self.bn1(input)))
out = F.avg_pool2d(out,2)
return out class DenseNet(nn.Module):
def __init__(self,growthRate,depth,reduction,nClasses,bottleneck):
super(DenseNet,self).__init__()
#DenseBlock中非线性变换模块的个数
nNoneLinears = (depth-4)//3
if bottleneck:
nNoneLinears //=2 nChannels = 2*growthRate
self.conv1 = nn.Conv2d(3,nChannels,kernel_size=3,padding=1,bias=False)
self.denseblock1 = self._make_dense(nChannels,growthRate,nNoneLinears,bottleneck)
nChannels += nNoneLinears*growthRate
nOutChannels = int(math.floor(nChannels*reduction)) #向下取整
self.transition1 = Transition(nChannels,nOutChannels) nChannels = nOutChannels
self.denseblock2 = self._make_dense(nChannels,growthRate,nNoneLinears,bottleneck)
nChannels += nNoneLinears*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
self.transition2 = Transition(nChannels, nOutChannels) nChannels = nOutChannels
self.denseblock3 = self._make_dense(nChannels, growthRate, nNoneLinears, bottleneck)
nChannels += nNoneLinears * growthRate self.bn1 = nn.BatchNorm2d(nChannels)
self.fc = nn.Linear(nChannels,nClasses) #参数初始化
for m in self.modules():
if isinstance(m,nn.Conv2d):
n = m.kernel_size[0]*m.kernel_size[1]*m.out_channels
m.weight.data.normal_(0,math.sqrt(2./n))
elif isinstance(m,nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m,nn.Linear):
m.bias.data.zero_() def _make_dense(self,nChannels,growthRate,nDenseBlocks,bottleneck):
layers = []
for i in range(int(nDenseBlocks)):
if bottleneck:
layers.append(Bottleneck(nChannels,growthRate))
else:
layers.append(SingleLayer(nChannels,growthRate))
nChannels+=growthRate
return nn.Sequential(*layers) def forward(self, *input):
out = self.conv1(input)
out = self.transition1(self.denseblock1(out))
out = self.transition2(self.denseblock2(out))
out = self.denseblock3(out)
out = torch.squeeze(F.avg_pool2d(F.relu(self.bn1(out)),8))
out = F.log_softmax(self.fc(out))
return out