[bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]

时间:2023-01-26 07:55:07

题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数。

题解:

  首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数。

  其次枚举$\sqrt{mid}$内的所有质数,由容斥原理

    $Num=0个质数平方的倍数的数量(1的倍数)-1个质数平方的倍数的数量(9,25...的倍数)$

      $+2个质数平方的倍数的数量(36,100...的倍数)...$

  可以发现对于一个数x,x的倍数数量对答案的贡献符号为$\mu(x)$。

  例如:9的倍数数量最答案的贡献是$\mu(9)\lfloor{\frac{mid}{9}}\rfloor=-\lfloor{\frac{mid}{9}}\rfloor$

  所以最终mid以内的个数为

    $Cnt=\sum\limits^{\lfloor{\sqrt{mid}}\rfloor}_{i=1}(\mu(i)\lfloor{\frac{mid}{i^2}}\rfloor)$

  其中莫比乌斯函数为积性函数所以可以用线性筛预处理。

 #include <bits/stdc++.h>

 using namespace std;

 int    T,n,p[],Mu[],noprime[];
bool visited[]; void Mobius(const int N)
{
int pnum=; Mu[]=;
for(int i=;i<N;i++)
{
if(!visited[i]) { p[pnum++]=i; Mu[i]=-; }
for(int j=;j<pnum && i*p[j]<N;j++)
{
visited[i*p[j]]=true;
if(i%p[j]==) { Mu[i*p[j]]=; break; }
Mu[i*p[j]]=-Mu[i];
}
}
} int Check(const int x)
{
int temp=sqrt(x),Ans=;
for(int i=;i<=temp;++i)
Ans+=Mu[i]*(x/i/i);
return Ans;
} int main()
{
scanf("%d",&T); Mobius();
while(T--)
{
scanf("%d",&n);
int l=,r=2e9;
while(l<r-)
{
int mid=l+((r-l)>>);
if(Check(mid)>=n)r=mid;
else l=mid;
}
printf("%d\n",r);
}
return ;
}