【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

时间:2023-01-15 07:54:46

2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2371  Solved: 1143
[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。 然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50

Source

Solution

首先想到容斥,但是询问需要涉及x之前有多少满足的数,显然不能枚举,不过可以二分

二分x,那么涉及求满足条件的数的个数,考虑利用莫比乌斯反演函数的性质,计算质数的平方的倍数(有重复所以利用莫比乌斯函数)

判定一下左右段卡卡就出来了

根据容斥原理可知 对于sqrt(x)以内所有的质数 有
•  x以内的无平方因子数
•=0个质数乘积的平方的倍数的数的数量(1的倍数)
•-每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)
•+每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...

坑点:

check中计算的时候会爆int,注意开longlong(一开始真的没注意到)

注意二分的范围(这道题完全可以1~2*K)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int T,K;
int prime[],tot,mu[];bool flag[];
void Prework(int x)
{
flag[]=; mu[]=;
for (int i=; i<=x; i++)
{
if (!flag[i]) prime[++tot]=i,mu[i]=-;
for (int j=; j<=tot&&i*prime[j]<=x; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j])) {mu[i*prime[j]]=; break;}
else mu[i*prime[j]]=-mu[i];
}
}
}
long long check(long long x)
{
long long re=; int t=sqrt(x);
for (int i=; i<=t; i++) re+=mu[i]*x/(i*i);
return re;
}
int main()
{
T=read(); Prework();
while (T--)
{
K=read();
long long l=,r=*K;
while (l<=r)
{
int mid=(l+r)>>;
if (check(mid)<K) l=mid+;
else r=mid-;
}
printf("%lld\n",l);
}
return ;
}

垃圾DaD3zZ,忘开longlong,TLE成狗