Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
4 3 100
111
111
Sample Output
81
HINT
Source
Solution
$f[i][j]$表示由$i$的数字构成的数串中与不吉利数字刚好匹配$j$位的方案数
因为我们只需关心后$j$位是否被匹配,如果在不久的将来有一位失配,那么这一段字符就一定不是给定的数串
可以看出来,由$f[i]$转移到$f[i+1]$时,需要借助$KMP$算出,具体方法就是枚举$0\sim 9$,用$\pi$数组算出匹配的位数$k$,$f[i+1][k]$+=$f[i][j]$
注意到准考证号位数可以达到$10^9$妈蛋考试时号码都抄不完,$TLE/MLE$无疑
由于每一次$f[i]$转移到$f[i+1]$时所有步骤是一样的,所以可以用一个矩阵,用乘法代替一次转移。这样就可以用快速幂优化转移啦
构造矩阵暴力即可,注意$f[i][m]$的特殊性,它每次只向$f[i+1][m]$转移。
#include <bits/stdc++.h>
using namespace std;
int mod, pi[];
struct matrix
{
int a[][], n, m; matrix() {} matrix(int x, int y)
{
n = x, m = y;
memset(a, , sizeof(a));
} matrix operator* (matrix rhs)
{
matrix ans(n, rhs.m);
for(int i = ; i < n; ++i)
for(int j = ; j < rhs.m; ++j)
for(int k = ; k < m; ++k)
ans.a[i][j] = (ans.a[i][j] + a[i][k] * rhs.a[k][j]) % mod;
return ans;
} matrix operator^ (int rhs)
{
matrix ans(n, n), bs = *this;
for(int i = ; i < n; ++i)
ans.a[i][i] = ;
for(; rhs; rhs >>= , bs = bs * bs)
if(rhs & ) ans = ans * bs;
return ans;
}
};
char s[]; void getpi(int m)
{
int j = ;
for(int i = ; i <= m; ++i)
{
while(j && s[i] != s[j + ])
j = pi[j];
pi[i] = s[i] == s[j + ] ? ++j : j;
}
} int main()
{
int n, m, ans, bs = ;
cin >> n >> m >> mod >> s + ;
getpi(m);
matrix f(, m + ), w(m + , m + );
f.a[][] = , w.a[m][m] = ;
for(int i = ; i < m; ++i)
for(int j = ; j < ; ++j)
{
int k = i;
while(k && j != s[k + ] - )
k = pi[k];
if(j == s[k + ] - ) ++k;
++w.a[i][k];
}
f = f * (w ^ n);
for(ans = ; n; n >>= , bs = (bs * bs) % mod)
if(n & ) ans = (ans * bs) % mod;
cout << (ans - f.a[][m] + mod) % mod << endl;
return ;
}