python性能分析之cProfile模块

时间:2021-10-10 03:09:32

cProfile是标准库内建的分析工具的其中一个,另外两个是hotshot和profile

-s cumulative

-s cumulative开关告诉cProfile对每个函数累计花费的时间进行排序,他能让我看到代码最慢的部分。

我们有这样一个函数。

loopdemo.py

def foo():
for a in range(0, 101):
for b in range(0, 101):
if a + b == 100:
yield a, b
if __name__ == '__main__':
for item in foo():
print(item)

运行下面命令

python3 -m cProfile -s cumulative loopdemo.py

得到如下结果

         206 function calls in 0.001 seconds
#在0.01秒内共发生了206次函数调用。包括cProfile的开销。 Ordered by: cumulative time ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
1 0.000 0.000 0.001 0.001 loopdemo.py:7(<module>)
102 0.001 0.000 0.001 0.000 loopdemo.py:7(foo)
101 0.001 0.000 0.001 0.000 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

其中对参数的解释:

ncalls:表示函数调用的次数;

tottime:表示指定函数的总的运行时间,除掉函数中调用子函数的运行时间;

percall:(第一个percall)等于 tottime/ncalls;

cumtime:表示该函数及其所有子函数的调用运行的时间,即函数开始调用到返回的时间;

percall:(第二个percall)即函数运行一次的平均时间,等于 cumtime/ncalls;

filename:lineno(function):每个函数调用的具体信息;

需要注意的是cProfile很难搞清楚函数内的每一行发生了什么,是针对整个函数来说的。

-o profile.stats

我们可与你通过这个函数将结果输出到一个文件中,当然文件的后缀名是任意的,这里为了方便后面配合python中使用所以将后缀定为stats。

首先让我们运行下面的命令

python3 -m cProfile -o loopdemo_profile.stats loopdemo.py

然后运行下面的脚本

import pstats
p=pstats.Stats("loopdemo_profile.stats")
p.sort_stats("cumulative")
p.print_stats()
p.print_callers() # 可以显示函数被哪些函数调用
p.print_callees() # 可以显示哪个函数调用了哪些函数

可以看到输出了和之前控制台一样的结果


2006 function calls in 0.005 seconds Ordered by: cumulative time ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.005 0.005 {built-in method builtins.exec}
1 0.000 0.000 0.005 0.005 loopdemo.py:7(<module>)
1001 0.004 0.000 0.004 0.000 {built-in method builtins.print}
1002 0.000 0.000 0.000 0.000 loopdemo.py:30(foo2)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} Ordered by: cumulative time Function was called by...
ncalls tottime cumtime
{built-in method builtins.exec} <-
loopdemo.py:7(<module>) <- 1 0.000 0.005 {built-in method builtins.exec}
{built-in method builtins.print} <- 1001 0.004 0.004 loopdemo.py:7(<module>)
loopdemo.py:30(foo2) <- 1002 0.000 0.000 loopdemo.py:7(<module>)
{method 'disable' of '_lsprof.Profiler' objects} <- Ordered by: cumulative time Function called...
ncalls tottime cumtime
{built-in method builtins.exec} -> 1 0.000 0.005 loopdemo.py:7(<module>)
loopdemo.py:7(<module>) -> 1002 0.000 0.000 loopdemo.py:30(foo2)
1001 0.004 0.004 {built-in method builtins.print}
{built-in method builtins.print} ->
loopdemo.py:30(foo2) ->
{method 'disable' of '_lsprof.Profiler' objects} ->

line_profiler

安装

pip3 install Cpython
pip3 install Cython git+https://github.com/rkern/line_profiler.git

python性能分析之cProfile模块的更多相关文章

  1. python性能分析之line&lowbar;profiler模块

    line_profiler使用装饰器(@profile)标记需要调试的函数.用kernprof.py脚本运行代码,被选函数每一行花费的cpu时间以及其他信息就会被记录下来. 安装 pip3 insta ...

  2. Python性能分析

    Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/33 ...

  3. 如何进行 Python性能分析,你才能如鱼得水?

    [编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 9 ...

  4. Python性能分析工具Profile

    Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 ...

  5. python性能分析(一)——使用timeit给你的程序打个表吧

    前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了) ...

  6. Python性能分析与优化PDF高清完整版免费下载&vert;百度云盘

    百度云盘|Python性能分析与优化PDF高清完整版免费下载 提取码:ubjt 内容简介 全面掌握Python代码性能分析和优化方法,消除性能瓶颈,迅速改善程序性能! 对于Python程序员来说,仅仅 ...

  7. python性能分析--cProfile

    Python标准库中提供了三种用来分析程序性能的模块,分别是cProfile, profile和hotshot,另外还有一个辅助模块stats.这些模块提供了对Python程序的确定性分析功能,同时也 ...

  8. Python丨Python 性能分析大全

    虽然运行速度慢是 Python 与生俱来的特点,大多数时候我们用 Python 就意味着放弃对性能的追求.但是,就算是用纯 Python 完成同一个任务,老手写出来的代码可能会比菜鸟写的代码块几倍,甚 ...

  9. Python 性能分析工具简介

    Table of Contents 1. 性能分析和调优工具简介 1.1. Context Manager 1.2. Decorator 1.3. 系统自带的time命令 1.4. python ti ...

随机推荐

  1. 个人psp

    排球计分程序 1.计划 通过对用户故事估计这个任务需要3~5d天. 2.开发 2.1需求分析 作为一个观众,我希望了解每场比赛的比分,以便了解比赛的情况. 作为一个观众,我希望输入球队名称查询球队比分 ...

  2. Android高级第十一讲之不同系统间的区别

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! Android系统不断的升级,从基础到中级再到高级,逐步升级是软件工程敏捷开发的一个重点,在每个版本 ...

  3. javaScript 封装

    在基于web 的b/s 架构的项目中, 丰富的界面都离不开 javascript, javascript 在 html 中变得越来越强大,但是我们在写 javascript 的时候都比较随意,随着页面 ...

  4. Android和&period;net API的数据交互

    一..net API 一般的页面都是.aspx文件,由于.aspx文件都带有HTML的格式,我们传递的都是json格式的数据,所以html页面格式对json格式有影响,故而我们写Web-API都不会采 ...

  5. (一)JAVA使用POI操作excel

    1,Poi 简介 Apache POI 是用Java编写的免费开源的跨平台的 Java API,Apache POI提供API给Java程式对Microsoft Office格式档案读和写的功能 PO ...

  6. MFC窗口风格 WS&lowbar;style&sol;WS&lowbar;EX&lowbar;style(超详细)

    窗口风格(Window style) WS_BORDER   有边框窗口 WS_CAPTION   必须和WS_BORDER风格配合,但不能与WS_DLGFRAME风格一起使用.指示窗口包含标题要部分 ...

  7. Ubuntu 13&period;04 安装 GCC4&period;8&period;1

    终于有了完整实现C++11的GCC 4.8.1. 给自己的系统升级吧. 下面的步骤可以安装GCC4.8.1, 内容来自:http://askubuntu.com/questions/312620/ho ...

  8. C&plus;&plus; Primer 有感(异常处理)(四)

    查看普通函数的声明的时候,不可能知道该函数会抛出什么异常,但是在捕获异常的时候要知道一个函数会抛出什么样的异常,以便捕获异常. 异常说明:指定,如果函数抛出异常,抛出的异常将是包含在该说明中的一种,或 ...

  9. Docker 简单部署 ElasticSearch

    https://www.cnblogs.com/jianxuanbing/p/9410800.html

  10. SAP基础:定位点运算

    先看一下下面简单的代码: REPORT zlytest003. ) VALUE '21.00'. ) . b = a. WRITE b. 运行结果是: 这时候到程序属性页面: 修改固定点算术为空. 保 ...