1877. [SDOI2009]晨跑【费用流】

时间:2024-12-25 11:04:14

Description

Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他
坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一
个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室
编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 
在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,
他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间
都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。

Input

第一行:两个数N,M。表示十字路口数和街道数。 
接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。
N ≤ 200,M ≤ 20000。

Output

两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。

Sample Input

7 10
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
2 5 5
3 6 6
5 7 1
6 7 1

Sample Output

2 11
一道近乎最小费用最大流的模板题
唯一和模板不同的就是我们要限制每个点只能到一次。
这一看就是常规拆点啊
所以
我们将点裂成两个,然后在两点间连一个容量为1费用为0的边,用来限制每个点只能走一次
然后再在x+n和y中的连边,把容量设为1,费用设为边长
跑一边从(n+1)到n的最小费用最大流(因为1节点可以重复走所以要n+1)
最大流和最小费用即为答案。
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
struct node
{
int Flow;
int Cost;
int to;
int next;
}edge[];
queue<int>q;
int INF,dis[],pre[];
int head[],num_edge;
bool used[]; void add(int u,int v,int l,int c)
{
edge[++num_edge].to=v;
edge[num_edge].Flow=l;
edge[num_edge].Cost=c;
edge[num_edge].next=head[u];
head[u]=num_edge;
} bool SPFA(int s,int e)
{
memset(pre,-,sizeof(pre));
memset(dis,0x7f,sizeof(dis));
q.push(s);
dis[s]=;
used[s]=true;
while (!q.empty())
{
int x=q.front();
q.pop();
for (int i=head[x];i!=;i=edge[i].next)
if (edge[i].Flow> && dis[x]+edge[i].Cost<dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+edge[i].Cost;
pre[edge[i].to]=i;
if (!used[edge[i].to])
{
used[edge[i].to]=true;
q.push(edge[i].to);
}
}
used[x]=false;
}
return (dis[e]!=INF);
} void MCMF(int s,int e)
{
int d=INF,Ans=,Fee=;
while (SPFA(s,e))
{
for (int i=e;i!=s;i=i=edge[((pre[i]-)^)+].to)
d=min(edge[pre[i]].Flow,d);
for (int i=e;i!=s;i=i=edge[((pre[i]-)^)+].to)
{
edge[pre[i]].Flow-=d;
edge[((pre[i]-)^)+].Flow+=d;
}
Ans+=d;
Fee+=dis[e]*d;
}
printf("%d %d",Ans,Fee);
} int main()
{
memset(&INF,0x7f,sizeof(INF));
int n,m,u,v,l;
scanf("%d%d",&n,&m);
for (int i=;i<=n;++i)
{
add(i,i+n,,);
add(i+n,i,,);
}
for (int i=;i<=m;++i)
{
scanf("%d%d%d",&u,&v,&l);
add(u+n,v,,l);
add(v,u+n,,-l);
}
MCMF(n+,n);
}