1、原型模式解决的问题
现在有一个抽象的游戏设施建造系统,负责构建一个现代风格和古典风格的房屋和道路.
前提:抽象变化较慢,实现变化较快(不稳定)
整个抽象的游戏设施建造系统相对变化较慢,本例中只有一个Build的创建方法,而Build内部的方法实现,该实现依赖与各种具体的实现,而这些实现变化的非常频繁,现在虽然只有现代风格和古典风格的房屋和道路的构建,而将来可能会卡通风格、另类风格等各种各样的对象加入到Build方法中来渲染游戏的背景.
在不考虑第三方容器组件(如Unity)和设计模式的情况下,为了快速完成这个任务,我们通常会用以下这种方式编码,代码如下:
#region 抽象A
/// <summary>
/// 抽象的游戏设施建造系统
/// </summary>
public class BuildSystem
{
/// <summary>
/// Build方法的逻辑变化较慢(只需要创建2种风格的房屋和道路,总共8个对象),但是风格变化较快,由于需求变化,可能需要创建诸如卡通风格、另类风格等的房屋和道路
/// </summary>
public void Builld()
{
ModernHouse modernHouseA = new ModernHouse();
ModernHouse modernHouseB = new ModernHouse();
ModernRoad modernRoadA = new ModernRoad();
ModernRoad modernRoadB = new ModernRoad();
ClassicalHouse classicalBuildA = new ClassicalHouse();
ClassicalHouse classicalBuildB = new ClassicalHouse();
ClassicalRoad classicalRoadA = new ClassicalRoad();
ClassicalRoad classicalRoadB = new ClassicalRoad();
//下面是具体的对象实例操作,如现代化房屋虽然有两个实例,但是可能两个可能高矮、外形不同等
}
}
#endregion #region 实现细节b
/// <summary>
/// 现代风格的房屋
/// </summary>
public class ModernHouse { } /// <summary>
/// 现代风格的道路
/// </summary>
public class ModernRoad { } /// <summary>
/// 古典风格的房屋
/// </summary>
public class ClassicalHouse { } /// <summary>
/// 古典风格的道路
/// </summary>
public class ClassicalRoad { }
#endregion
从oop的角度分析上面的代码,可以理解为抽象的游戏系统直接依赖具体的实现细节(现代风格和古典风格的房屋和道路),如下图:
这时客户端的调用代码如下:
/// <summary>
/// Prototype原型模式-创建型模式
/// </summary>
class Program
{
static void Main(string[] args)
{
BuildSystem buildSystem = new BuildSystem();
buildSystem.Builld();
}
}
这种设计方式的弊端显而易见,Build方法显得很无力,这个时候增加了一个新的需求,如下:
客户端需要构建一种卡通风格和另类风格的道路和房屋,但是Build方法的主逻辑还是不变,同样是(创建两种风格的房屋和道路,共8个对象).
这时Build方法显得很无力,只能创建一种特定逻辑的游戏背景建筑.(当然你可以在BuildSystem中新添一种新的Build方法来满足需求,但是这种方式的代码的重用性差)而且,掉到了,抽象依赖于实现的坑里面去了,这个时候我们就需要对代码进行重构,进行依赖倒置.如下图:
对所有的Build方法中的8个实例(实现细节b)进行抽象,让它们依赖于抽象B,让Build方法(抽象A)也依赖于抽象B,代码如下:
#region 抽象A
/// <summary>
/// 抽象的游戏设施建造系统
/// </summary>
public class BuildSystem
{
/// <summary>
/// Build方法的逻辑变化较慢(只需要创建2种风格的房屋和道路,总共8个对象),但是风格变化较快,由于需求变化,可能需要创建诸如卡通风格、另类风格等的房屋和道路
/// </summary>
public void Builld(House houseone, House houseTwo,Road roadone, Road roadtwo)
{
House modernHouseA = houseone.Clone();
House modernHouseB = houseone.Clone();
Road modernRoadA = roadone.Clone();
Road modernRoadB = roadone.Clone();
House classicalBuildA = houseTwo.Clone();
House classicalBuildB = houseTwo.Clone();
Road classicalRoadA = roadtwo.Clone();
Road classicalRoadB = roadtwo.Clone();
//下面是具体的对象实例操作,如现代化房屋虽然有两个实例,但是可能两个可能高矮、外形不同等
}
}
#endregion #region 抽象B
/// <summary>
/// 抽象房屋
/// </summary>
public abstract class House
{
/// <summary>
/// 抽象的House的Clone方法,用于构建House的多个实例,如果抽象A只需要一个实现b的一个实例,则不需要该方法
/// </summary>
/// <returns></returns>
public abstract House Clone();
} /// <summary>
/// 抽象道路
/// </summary>
public abstract class Road
{
/// <summary>
/// 抽象的Road的Clone方法,用于构建Road的多个实例,如果抽象A只需要一个实现b的一个实例,则不需要该方法
/// </summary>
/// <returns></returns>
public abstract Road Clone();
}
#endregion #region 实现细节b
/// <summary>
/// 现代风格的房屋
/// </summary>
public class ModernHouse : House
{
public override House Clone()
{
//实现ModernHouse的浅拷贝,如果当前对象中含有数组等,则需要使用序列化的方式(深拷贝)实现对象的克隆,否则当一个对象实例修改了数组,另一个对象实例会共享该数组
return (ModernHouse)MemberwiseClone();
}
} /// <summary>
/// 现代风格的道路
/// </summary>
public class ModernRoad : Road
{
public override Road Clone()
{
return (ModernRoad)MemberwiseClone();
}
} /// <summary>
/// 古典风格的房屋
/// </summary>
public class ClassicalHouse : House
{
public override House Clone()
{
return (House)MemberwiseClone();
}
} /// <summary>
/// 古典风格的道路
/// </summary>
public class ClassicalRoad: Road
{
public override Road Clone()
{
return (ClassicalRoad)MemberwiseClone();
}
} /// <summary>
/// 卡通风格的房屋
/// </summary>
public class CartoonHouse : House
{
public override House Clone()
{
return (CartoonHouse)MemberwiseClone();
}
} /// <summary>
/// 卡通风格的道路
/// </summary>
public class CartoonRoad : Road
{
public override Road Clone()
{
return (CartoonRoad)MemberwiseClone();
}
} /// <summary>
/// 另类风格的房屋
/// </summary>
public class AlternativeHouse : House
{
public override House Clone()
{
return (AlternativeHouse)MemberwiseClone();
}
} /// <summary>
/// 另类风格的道路
/// </summary>
public class AlternativeRoad : Road
{
public override Road Clone()
{
return (AlternativeRoad)MemberwiseClone();
}
}
#endregion
这时客户端的调用代码如下:
class Program
{
static void Main(string[] args)
{
BuildSystem buildSystem = new BuildSystem();
//构建卡通风格和另类风格的房屋和道路
buildSystem.Builld(new CartoonHouse(), new AlternativeHouse(), new CartoonRoad(), new AlternativeRoad());
//构建现代风格和古典风格的房屋和道路
buildSystem.Builld(new ModernHouse(),new ClassicalHouse(),new ModernRoad(),new ClassicalRoad());
}
}
ok,重构后的代码,在抽象A相对稳定的情况,通过对实现细节b的抽象,让实现细节b和抽象A都依赖于抽象B,完成了依赖倒置,实现了代码new的解耦,这就是原型模式!
关于原型模式的几个要点:
1、Prototype模式用于隔离类对象的使用者和具体类型(易变类)的之间的耦合关系,但是这些易变类必须拥有稳定的接口.
2、Prototype模式对于"如何创建易变类的对象"采用"原型克隆"的方式来做,它使我们能非常灵活动态的创建某些拥有"稳定接口"的新对象.所需的工作仅仅是创建一个新类的对象即原型,然后在需要的地方不断的Clone.
3、Prototype模式的Clone方法可以利用Object自带的MemberwiseClone方法,注:该方法只能用于比较简单的类,只能实现浅拷贝,如果类中包含数组等引用类型,则需要使用序列化方法来实现类型的深拷贝