Description
Input
Output
只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。
Sample Input
1 1 1
1 2 2
2 2 3
Sample Output
HINT
Source
这其实是一道大火题,是CDQ分治的发明题 Orz,Orz,Orz
蒟蒻如我连一个单调都做不出,而这个题就真的实在玩蛇皮了
题目提示解题法:
numa=numb*rk;
numb*(rk*ak+bk)=f[k];
numb=f[k]/(rk*ak+bk);
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
#include<set>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#define lson num<<1
#define rson num<<1|1
using namespace std;
typedef long long ll;
const int N=100050;
double f[N],a[N],b[N],ak[N],bk[N],rk[N],S;
int n;
int main(){
scanf("%d",&n);scanf("%lf",&S);
for(int i=1;i<=n;i++){
scanf("%lf%lf%lf",&ak[i],&bk[i],&rk[i]);
}
f[0]=S;
for(int i=1;i<=n;i++){
f[i]=f[i-1];
for(int j=1;j<i;j++){
b[j]=f[j]/(rk[j]*ak[j]+bk[j]);a[j]=b[j]*rk[j];
f[i]=max(f[i],a[j]*ak[i]+b[j]*bk[i]);
}
}
printf("%.3f",f[n]);
}
这是我用线打斜率优化的第一道题,关于线的斜率优化表示法见我的斜率优化总结
这一题的方程:
a[j]*ak[i]+b[j]*bk[i]
同时提出一个ak[i]变为:
(a[j]+b[j]*(bk[i]/ak[i]))*ak[i];运用线的套路
令b=a[j],b[j]=k,x=(bk[i]/ak[i]),ak为乘在外面的一个常数
我们发现斜率不是单调的,横坐标也不是单调的,这就不同于普通的都满足单调性的斜率优化
我们考虑普通的斜率优化
需要依赖于斜率的单调性来用单调队列进行队尾的更新来实现O(n)的维护半平面交
需要依赖于横坐标的单调性来用单调队列进行队头决策的移动来实现O(n)的决策转移
然而我们发现这两个步骤都需要依赖于有序,所以CDQ就可以通过离线化无序为有序
我们考虑到转移相当于是一个偏序问题,首先必须满足序号小的向序号大的转移
考虑到CDQ分治的基本思路,用左边的答案来更新右边的答案
我们可以相当于把问题转化为左右两个部分的偏序问题
我们要用左边来更新右边,我们相当于需要在左边斜率递增(斜率单调这个用归并即可以实现)才可以用单调队列实现O(n)维护一个决策的半平面交
然后我们需要在右边横坐标递增,利用左边的决策的半平面交再利用单调队列实现O(n)的决策转移(横坐标单调这个在外面sort一遍即可)
这样相当于两边都是一个二维的偏序问题,至此问题已经被完美解决了,整个分治的流程十分完美
时间复杂度:nlogn
代码:
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
#include<set>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#define lson num<<1
#define rson num<<1|1
#define eps 1e-9
using namespace std;
typedef long long ll;
const int N=100050;
int cnt;
struct data{double k,x,b;int id;}g[N],p[N],q[N];
double f[N],ak[N],bk[N],rk[N];
bool cmp(const data &a,const data &b){
return a.x<b.x;
}
void solve(int l,int r){
if(l==r) return;
int mid=(l+r)>>1,l1=l,l2=mid+1,head=1,tail=0;
double MAX=0;
for(int i=l;i<=r;i++){
cnt++;
if(g[i].id<=mid) p[l1++]=g[i];
else p[l2++]=g[i];
}
for(int i=l;i<=r;i++) g[i]=p[i];
solve(l,mid);
for(int i=l;i<=mid;i++){
while(head<tail&&(g[i].k-q[tail].k)*(q[tail-1].b-q[tail].b)>=(q[tail].k-q[tail-1].k)*(q[tail].b-g[i].b))
tail--;
q[++tail]=g[i],MAX=max(MAX,f[g[i].id]);
}
sort(g+mid+1,g+r+1,cmp);
for(int i=mid+1;i<=r;i++){
while(head<tail&&q[head].k*g[i].x+q[head].b<=q[head+1].k*g[i].x+q[head+1].b)
head++;
f[g[i].id]=max(f[g[i].id],max(MAX,ak[g[i].id]*(q[head].k*g[i].x+q[head].b)));
g[i].k=f[g[i].id]/(ak[g[i].id]*rk[g[i].id]+bk[g[i].id]),g[i].b=g[i].k*rk[g[i].id];
}
solve(mid+1,r);l1=l,l2=mid+1;
for(int i=l;i<=r;i++){
if(l2>r||(l1<=mid&&g[l1].k<=g[l2].k)) p[i]=g[l1++];
else p[i]=g[l2++];
}
for(int i=l;i<=r;i++) g[i]=p[i];
}
int main()
{
int n;
cin>>n;scanf("%lf",&f[0]);
for(int i=1;i<=n;i++){
scanf("%lf%lf%lf",&ak[i],&bk[i],&rk[i]);
f[i]=f[0];
g[i].id=i,g[i].x=bk[i]/ak[i],g[i].k=f[i]/(rk[i]*ak[i]+bk[i]),g[i].b=g[i].k*rk[i];
}
solve(1,n);
printf("%.3f",f[n]);
}