逻辑回归 与梯度算法

时间:2022-03-26 11:23:16

逻辑回归(logistic regression)

1. sigmoid 函数:

逻辑回归 与梯度算法


逻辑回归 与梯度算法


梯度上升(Gradient Ascent)与 梯度下降(Gradient Descent):

逻辑回归 与梯度算法     逻辑回归 与梯度算法


2. 循环迭代的梯度上升计算系数w:

12345678910111213141516171819202122232425 def loadDataSet():    dataMat = []; labelMat = []    fr = open('testSet.txt')    for line in fr.readlines():        lineArr = line.strip().split()        dataMat.append([1.0float(lineArr[0]), float(lineArr[1])])  # here set x0=1.0        labelMat.append(int(lineArr[2]))    return dataMat,labelMat           def sigmoid(inX):    return 1.0/(1+exp(-inX))           def gradAscent(dataMatIn, classLabels):    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix    labelMat = mat(classLabels).transpose() #convert to NumPy matrix    m,n = shape(dataMatrix)    alpha = 0.001    maxCycles = 500    weights = ones((n,1))    for in range(maxCycles):              #heavy on matrix operations        = sigmoid(dataMatrix*weights)     #matrix mult        error = (labelMat - h)              #vector subtraction        #weights = weights + alpha * dataMatrix.transpose()* error        weights = weights + alpha * dataMatrix.transpose()* error/m  #matrix mult    return weights

3. 画出上面2计算出来的分类结果:

123456789101112131415161718192021 def plotBestFit(weights):    import matplotlib.pyplot as plt    dataMat,labelMat=loadDataSet()    dataArr = array(dataMat)    = shape(dataArr)[0    xcord1 = []; ycord1 = []    xcord2 = []; ycord2 = []    for in range(n):        if int(labelMat[i])== 1:            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])        else:            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])    fig = plt.figure()    ax = fig.add_subplot(111)    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')    ax.scatter(xcord2, ycord2, s=30, c='green')    = arange(-3.03.00.1)    = (-weights[0]-weights[1]*x)/weights[2]      #for sigmoid,input=0 is the classifier line for 0 and 1, so the classifier is w0x0+w1x1+w2x2=0    ax.plot(x, y)    plt.xlabel('X1'); plt.ylabel('X2');    plt.show()

逻辑回归 与梯度算法

4.随机梯度上升(stochastic gradient ascent)


由于上述的梯度上升算法,每次迭代都是用到全部的数据集,当数据量特别大,并且特征维数特别高时,计算量将会非常巨大;因此一种替代方法就是每次迭代更新都是用一个新样本来完成,即随机梯度上升法。

逻辑回归 与梯度算法


随机梯度上升法(1)步长a可变 (2)每次迭代,随机选取样本来更新系数w

12345678910111213 def stocGradAscent1(dataMatrix, classLabels, numIter=150):    m,n = shape(dataMatrix)    weights = ones(n)   #initialize to all ones    for in range(numIter):        dataIndex = range(m)        for in range(m):            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not             randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant            = sigmoid(sum(dataMatrix[randIndex]*weights))            error = classLabels[randIndex] - h            weights = weights + alpha * error * dataMatrix[randIndex]            del(dataIndex[randIndex])    return weights

这样可以用比较少次数的迭代,就会得到和2里相类似的结果,下图是numIter=5次随机梯度结果:

逻辑回归 与梯度算法

#coding:utf-8#===================================#Logistic回归#author:zhang haibo#time: 2013-7-12#=================================== import mathfrom numpy import * #加载数据集def loadDataSet():    dataMat = []; labelMat =[]    fr = open('testSet.txt')    for line in fr.readlines():        lineArr = line.strip().split()        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])        labelMat.append(int(lineArr[2]))    return dataMat, labelMat #sigmod函数def sigmoid(inX):    return 1.0/(1+exp(-inX)) #Logistic回归梯度上升优化算法:用全部的样本进行训练,大量的乘法def gradAscent(dataMatIn, classLabels):    dataMatrix = mat(dataMatIn)    labelMat = mat(classLabels).transpose()    m,n = shape(dataMatrix)    alpha = 0.001    maxCycles = 500    weights = ones((n,1))    for k in range(maxCycles):        h = sigmoid(dataMatrix*weights)        error = (labelMat - h)        weights = weights + alpha * dataMatrix.transpose() * error    return weights #随机梯度上升算法:在线学习算法,每次仅用一个样本进行训练def stocGradAscent0(dataMatrix, classLabels):    m,n = shape(dataMatrix)    alpha = 0.01    weights = ones(n)    for i in range(m):        h = sigmoid(sum(dataMatrix[i]*weights))        error = classLabels[i] - h        weights += alpha*error*dataMatrix[i]    return weights #改进的随机梯度上升算法def stocGradAscent1(dataMatrix, classLabels, numIter=150):    m,n = shape(dataMatrix)    weights = ones(n)    for j in range(numIter):        dataIndex = range(m)        for i in range(m):            alpha = 4/(1.0+j+i) + 0.01            randIndex = int(random.uniform(0,len(dataIndex)))            h = sigmoid(sum(dataMatrix[dataIndex[randIndex]]*weights))            error = classLabels[dataIndex[randIndex]] - h            weights += alpha*error*dataMatrix[dataIndex[randIndex]]            del(dataIndex[randIndex])    return weights  #Logistic回归分类函数def classifyVector(inX, weights):    prob = sigmoid(sum(inX*weights))    if prob > 0.5 :        return 1.0    else:        return 0.0    #示例:预测病马的死亡率def colicTest():    frTrain = open('horseColicTraining.txt')    frTest = open('horseColicTest.txt')    trainingSet = []; trainingLabels = []    for line in frTrain.readlines():        currLine = line.strip().split('\t')        lineArr = []        for i in range(21):            lineArr.append(float(currLine[i]))        trainingSet.append(lineArr)        trainingLabels.append(float(currLine[21]))    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500)    errorCount = 0; numTestVec = 0.0    for line in frTest.readlines():        numTestVec += 1.0        currLine = line.strip().split('\t')        lineArr = []        for i in range(21):            lineArr.append(float(currLine[i]))        if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):            errorCount += 1        errorRate = (float(errorCount)/numTestVec)        print "the error rate of this test is: %f " % errorRate        return errorRate def multiTest():    numTests = 10; errorSum = 0.0    for k in range(numTests):        errorSum += colicTest()    print "after %d iterations the average error rate is: %f" %(numTests, errorSum/float(numTests))      #=============测试代码=====================dataArr, labelMat = loadDataSet()print gradAscent(dataArr, labelMat)print stocGradAscent1(array(dataArr),labelMat)multiTest()