Android中图像变换Matrix的原理、代码验证和应用(一)

时间:2023-01-28 10:00:21

第一部分 Matrix的数学原理

在Android中,如果你用Matrix进行过图像处理,那么一定知道Matrix这个类。Android中的Matrix是一个3 x 3的矩阵,其内容如下:

Android中图像变换Matrix的原理、代码验证和应用(一)

Matrix的对图像的处理可分为四类基本变换:

Translate           平移变换

Rotate                旋转变换

Scale                  缩放变换

Skew                  错切变换

从字面上理解,矩阵中的MSCALE用于处理缩放变换,MSKEW用于处理错切变换,MTRANS用于处理平移变换,MPERSP用于处理透视变换。实际中当然不能完全按照字面上的说法去理解Matrix。同时,在Android的文档中,未见到用Matrix进行透视变换的相关说明,所以本文也不讨论这方面的问题。

针对每种变换,Android提供了pre、set和post三种操作方式。其中

set用于设置Matrix中的值。

pre是先乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。先乘相当于矩阵运算中的右乘。

post是后乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。后乘相当于矩阵运算中的左乘。

除平移变换(Translate)外,旋转变换(Rotate)、缩放变换(Scale)和错切变换(Skew)都可以围绕一个中心点来进行,如果不指定,在默认情况下是围绕(0, 0)来进行相应的变换的。

下面我们来看看四种变换的具体情形。由于所有的图形都是有点组成,因此我们只需要考察一个点相关变换即可。

一、 平移变换

假定有一个点的坐标是Android中图像变换Matrix的原理、代码验证和应用(一) ,将其移动到Android中图像变换Matrix的原理、代码验证和应用(一) ,再假定在x轴和y轴方向移动的大小分别为:

Android中图像变换Matrix的原理、代码验证和应用(一)

如下图所示:

Android中图像变换Matrix的原理、代码验证和应用(一)

不难知道:

Android中图像变换Matrix的原理、代码验证和应用(一)

如果用矩阵来表示的话,就可以写成:

Android中图像变换Matrix的原理、代码验证和应用(一)

 

二、 旋转变换

2.1    围绕坐标原点旋转:

假定有一个点Android中图像变换Matrix的原理、代码验证和应用(一) ,相对坐标原点顺时针旋转Android中图像变换Matrix的原理、代码验证和应用(一)后的情形,同时假定P点离坐标原点的距离为r,如下图:

Android中图像变换Matrix的原理、代码验证和应用(一)

那么,

Android中图像变换Matrix的原理、代码验证和应用(一)

如果用矩阵,就可以表示为:

Android中图像变换Matrix的原理、代码验证和应用(一)

2.2    围绕某个点旋转

如果是围绕某个点Android中图像变换Matrix的原理、代码验证和应用(一)顺时针旋转Android中图像变换Matrix的原理、代码验证和应用(一),那么可以用矩阵表示为:

Android中图像变换Matrix的原理、代码验证和应用(一)

可以化为:

Android中图像变换Matrix的原理、代码验证和应用(一)

很显然,

1.

Android中图像变换Matrix的原理、代码验证和应用(一)是将坐标原点移动到点Android中图像变换Matrix的原理、代码验证和应用(一)后,Android中图像变换Matrix的原理、代码验证和应用(一) 的新坐标。

2.

Android中图像变换Matrix的原理、代码验证和应用(一)

是将上一步变换后的Android中图像变换Matrix的原理、代码验证和应用(一),围绕新的坐标原点顺时针旋转Android中图像变换Matrix的原理、代码验证和应用(一) 。

3.

Android中图像变换Matrix的原理、代码验证和应用(一)

经过上一步旋转变换后,再将坐标原点移回到原来的坐标原点。

所以,围绕某一点进行旋转变换,可以分成3个步骤,即首先将坐标原点移至该点,然后围绕新的坐标原点进行旋转变换,再然后将坐标原点移回到原先的坐标原点。

三、 缩放变换

理论上而言,一个点是不存在什么缩放变换的,但考虑到所有图像都是由点组成,因此,如果图像在x轴和y轴方向分别放大k1k2倍的话,那么图像中的所有点的x坐标和y坐标均会分别放大k1k2倍,即

Android中图像变换Matrix的原理、代码验证和应用(一)

用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

缩放变换比较好理解,就不多说了。

四、 错切变换

错切变换(skew)在数学上又称为Shear mapping(可译为“剪切变换”)或者Transvection(缩并),它是一种比较特殊的线性变换。错切变换的效果就是让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移,且平移的大小和该点到x轴(或y轴)的垂直距离成正比。错切变换,属于等面积变换,即一个形状在错切变换的前后,其面积是相等的。

比如下图,各点的y坐标保持不变,但其x坐标则按比例发生了平移。这种情况将水平错切。

Android中图像变换Matrix的原理、代码验证和应用(一)

下图各点的x坐标保持不变,但其y坐标则按比例发生了平移。这种情况叫垂直错切。

Android中图像变换Matrix的原理、代码验证和应用(一)

假定一个点Android中图像变换Matrix的原理、代码验证和应用(一)经过错切变换后得到Android中图像变换Matrix的原理、代码验证和应用(一),对于水平错切而言,应该有如下关系:

Android中图像变换Matrix的原理、代码验证和应用(一)

用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

扩展到3 x 3的矩阵就是下面这样的形式:

Android中图像变换Matrix的原理、代码验证和应用(一)

同理,对于垂直错切,可以有:

Android中图像变换Matrix的原理、代码验证和应用(一)

在数学上严格的错切变换就是上面这样的。在Android中除了有上面说到的情况外,还可以同时进行水平、垂直错切,那么形式上就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

五、 对称变换

除了上面讲到的4中基本变换外,事实上,我们还可以利用Matrix,进行对称变换。所谓对称变换,就是经过变化后的图像和原图像是关于某个对称轴是对称的。比如,某点Android中图像变换Matrix的原理、代码验证和应用(一) 经过对称变换后得到Android中图像变换Matrix的原理、代码验证和应用(一)

如果对称轴是x轴,难么,

Android中图像变换Matrix的原理、代码验证和应用(一)

用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

如果对称轴是y轴,那么,

Android中图像变换Matrix的原理、代码验证和应用(一)

用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

如果对称轴是y = x,如图:

Android中图像变换Matrix的原理、代码验证和应用(一)

那么,

Android中图像变换Matrix的原理、代码验证和应用(一)

很容易可以解得:

Android中图像变换Matrix的原理、代码验证和应用(一)

用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

同样的道理,如果对称轴是y = -x,那么用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

特殊地,如果对称轴是y = kx,如下图:

Android中图像变换Matrix的原理、代码验证和应用(一)

那么,

Android中图像变换Matrix的原理、代码验证和应用(一)

很容易可解得:

Android中图像变换Matrix的原理、代码验证和应用(一)

用矩阵表示就是:

Android中图像变换Matrix的原理、代码验证和应用(一)

k = 0时,即y = 0,也就是对称轴为x轴的情况;当k趋于无穷大时,即x = 0,也就是对称轴为y轴的情况;当k =1时,即y = x,也就是对称轴为y = x的情况;当k = -1时,即y = -x,也就是对称轴为y = -x的情况。不难验证,这和我们前面说到的4中具体情况是相吻合的。

如果对称轴是y = kx + b这样的情况,只需要在上面的基础上增加两次平移变换即可,即先将坐标原点移动到(0, b),然后做上面的关于y = kx的对称变换,再然后将坐标原点移回到原来的坐标原点即可。用矩阵表示大致是这样的:

Android中图像变换Matrix的原理、代码验证和应用(一)

需要特别注意:在实际编程中,我们知道屏幕的y坐标的正向和数学中y坐标的正向刚好是相反的,所以在数学上y = x和屏幕上的y = -x才是真正的同一个东西,反之亦然。也就是说,如果要使图片在屏幕上看起来像按照数学意义上y = x对称,那么需使用这种转换:

Android中图像变换Matrix的原理、代码验证和应用(一)

要使图片在屏幕上看起来像按照数学意义上y = -x对称,那么需使用这种转换:
Android中图像变换Matrix的原理、代码验证和应用(一)

关于对称轴为y = kx y = kx + b的情况,同样需要考虑这方面的问题。

 

附:三角函数公式 ,有助于理解Matrix原理

两角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa 

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota) 

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2a=2sina*cosa

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) 

tan(a/2)=(1-cosa)/sina=sina/(1+cosa)

和差化积

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b) )

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

积化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tga=tana=sina/cosa

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重点三角函数

csc(a)=1/sin(a)

sec(a)=1/cos(a)

Android中图像变换Matrix的原理、代码验证和应用(一)的更多相关文章

  1. Android中图像变换Matrix的原理、代码验证和应用(二)

    第二部分 代码验证 在第一部分中讲到的各种图像变换的验证代码如下,一共列出了10种情况.如果要验证其中的某一种情况,只需将相应的代码反注释即可.试验中用到的图片: 其尺寸为162 x 251. 每种变 ...

  2. Android中图像变换Matrix的原理、代码验证和应用(三)

    第三部分 应用 在这一部分,我们会将前面两部分所了解到的内容和Android手势结合起来,利用各种不同的手势对图像进行平移.缩放和旋转,前面两项都是在实践中经常需要用到的功能,后一项据说苹果也是最近才 ...

  3. Android中的LruCache的原理和使用

    Android中的LruCache的原理和使用 LruCache,虽然很多文章都把LRU翻译成"最近最少使用"缓存策略,但Android中的LruCache真的如此吗? 答案是No ...

  4. Android中SensorManager.getRotationMatrix函数原理解释

    SensorManager是Android中的一个类,其有一个函数getRotationMatrix,可以计算出旋转矩阵,进而通过getOrientation求得设备的方向(航向角.俯仰角.横滚角). ...

  5. Android中的Matrix(矩阵)

    写在前面 看这篇笔记之前先看一下参考文章,这篇笔记没有系统的讲述矩阵和代码的东西,参考文章写的也有错误的地方,要辨证的看. 如何计算矩阵乘法 android matrix 最全方法详解与进阶(完整篇) ...

  6. Android 中View的工作原理

    Android中的View在Android的知识体系中扮演着重要的角色.简单来说,View就是Android在视觉的体现.我们所展现的页面就是Android提供的GUI库中控件的组合.但是当要求不能满 ...

  7. Android中微信抢红包插件原理解析和开发实现

    一.前言 自从去年中微信添加抢红包的功能,微信的电商之旅算是正式开始正式火爆起来.但是作为Android开发者来说,我们在抢红包的同时意识到了很多问题,就是手动去抢红包的速度慢了,当然这些有很多原因导 ...

  8. 【转】Android 学习笔记——利用JNI技术在Android中调用、调试C++代码

    原文网址:http://cherishlc.iteye.com/blog/1756762 在Android中调用C++其实就是在Java中调用C++代码,只是在windows下编译生成DLL,在And ...

  9. Android中典型的ROOT原理(5)

    ROOT的作用 Customization 用户的个人定制,如删除一些预安装,定制开机动画等. 特权操作 所有需要特权操作的基本都是要通过ROOT,这也是ROOT的初衷. ROOT的第一步:寻找漏洞并 ...

随机推荐

  1. css3 使用SVG做0.5px 的边框细线

    .HalfPixelLine{ background: repeat-x top left url("data:image/svg+xml;utf8,<svg xmlns='http: ...

  2. C&num; int转byte&lbrack;&rsqb;&comma;byte&lbrack;&rsqb;转int

    第一种方法: byte数组转int u = (uint)(b[0] | b[1] << 8 |b[2] << 16 | b[3] << 24); int转byte数 ...

  3. java中使用反射往一个泛型是Integer类型的ArrayList中添加字符串,反射的案例1&period;

    //------------------------- //废话不多说,直接上代码.代码里面添加了详细的解释. import java.lang.reflect.Constructor; import ...

  4. SQL语言的组成

    在正式学习SQL语言之前,首先让我们对SQL语言有一个基本认识,介绍一下SQL语言的 组成: 1.一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义. 2.一个SQL表由行集构成, ...

  5. cisco asa5520 IOS故障恢复

    在ASA5520上误删除了IOS 把一台电脑IP 设置成192.168.2.2 255.255.255.0 把IOS的BIN文件复制到这台电脑上,并安装一个CISCO TFTP SERVER V1.1 ...

  6. 吐槽下CSDN编辑器

    Perface 近期喜欢上了markdown,我认为它就是一些HTML标签的快捷键,用一些符号来取代标签,易学易读易用,何乐而不为呢?近期也喜欢用印象笔记来让我的记忆永存,确实它强大的收集能力让我迷上 ...

  7. myeclipse自动保存修改代码

    当你修改过代码后,myeclipse往往要你手动的保存代码才能运行这个修改后的代码,要是不保存就会一直运行修改前的代码.只要修改myeclipse中这两项,就可以让它编译运行修改后的代码: Windo ...

  8. vue加载优化策略

    vue.js是一个比较流行的前端框架,与react.js.angular.js相比来说,vue.js入手曲线更加流畅,不管掌握多少都可以快速上手.但是单页面应用也都有其弊病,有时候首屏加载慢的让人捏舌 ...

  9. pandas DataFrame apply&lpar;&rpar;函数&lpar;1&rpar;

    之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...

  10. Permission Policies

    The Permission Policy determines Security System behavior when there are no explicitly specified per ...