第二部分 代码验证
在第一部分中讲到的各种图像变换的验证代码如下,一共列出了10种情况。如果要验证其中的某一种情况,只需将相应的代码反注释即可。试验中用到的图片:
其尺寸为162 x 251。
每种变换的结果,请见代码之后的说明。
- <span style="font-size:13px;"></span><pre name="code" class="java">package com.pat.testtransformmatrix;
- import android.app.Activity;
- import android.content.Context;
- import android.graphics.Bitmap;
- import android.graphics.BitmapFactory;
- import android.graphics.Canvas;
- import android.graphics.Matrix;
- import android.os.Bundle;
- import android.util.Log;
- import android.view.MotionEvent;
- import android.view.View;
- import android.view.Window;
- import android.view.WindowManager;
- import android.view.View.OnTouchListener;
- import android.widget.ImageView;
- public class TestTransformMatrixActivity extends Activity
- implements
- OnTouchListener
- {
- private TransformMatrixView view;
- @Override
- public void onCreate(Bundle savedInstanceState)
- {
- super.onCreate(savedInstanceState);
- requestWindowFeature(Window.FEATURE_NO_TITLE);
- this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN);
- view = new TransformMatrixView(this);
- view.setScaleType(ImageView.ScaleType.MATRIX);
- view.setOnTouchListener(this);
- setContentView(view);
- }
- class TransformMatrixView extends ImageView
- {
- private Bitmap bitmap;
- private Matrix matrix;
- public TransformMatrixView(Context context)
- {
- super(context);
- bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sophie);
- matrix = new Matrix();
- }
- @Override
- protected void onDraw(Canvas canvas)
- {
- // 画出原图像
- canvas.drawBitmap(bitmap, 0, 0, null);
- // 画出变换后的图像
- canvas.drawBitmap(bitmap, matrix, null);
- super.onDraw(canvas);
- }
- @Override
- public void setImageMatrix(Matrix matrix)
- {
- this.matrix.set(matrix);
- super.setImageMatrix(matrix);
- }
- public Bitmap getImageBitmap()
- {
- return bitmap;
- }
- }
- public boolean onTouch(View v, MotionEvent e)
- {
- if(e.getAction() == MotionEvent.ACTION_UP)
- {
- Matrix matrix = new Matrix();
- // 输出图像的宽度和高度(162 x 251)
- Log.e("TestTransformMatrixActivity", "image size: width x height = " + view.getImageBitmap().getWidth() + " x " + view.getImageBitmap().getHeight());
- // 1. 平移
- matrix.postTranslate(view.getImageBitmap().getWidth(), view.getImageBitmap().getHeight());
- // 在x方向平移view.getImageBitmap().getWidth(),在y轴方向view.getImageBitmap().getHeight()
- view.setImageMatrix(matrix);
- // 下面的代码是为了查看matrix中的元素
- float[] matrixValues = new float[9];
- matrix.getValues(matrixValues);
- for(int i = 0; i < 3; ++i)
- {
- String temp = new String();
- for(int j = 0; j < 3; ++j)
- {
- temp += matrixValues[3 * i + j ] + "\t";
- }
- Log.e("TestTransformMatrixActivity", temp);
- }
- // // 2. 旋转(围绕图像的中心点)
- // matrix.setRotate(45f, view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(view.getImageBitmap().getWidth() * 1.5f, 0f);
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 3. 旋转(围绕坐标原点) + 平移(效果同2)
- // matrix.setRotate(45f);
- // matrix.preTranslate(-1f * view.getImageBitmap().getWidth() / 2f, -1f * view.getImageBitmap().getHeight() / 2f);
- // matrix.postTranslate((float)view.getImageBitmap().getWidth() / 2f, (float)view.getImageBitmap().getHeight() / 2f);
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate((float)view.getImageBitmap().getWidth() * 1.5f, 0f);
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 4. 缩放
- // matrix.setScale(2f, 2f);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(view.getImageBitmap().getWidth(), view.getImageBitmap().getHeight());
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 5. 错切 - 水平
- // matrix.setSkew(0.5f, 0f);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(view.getImageBitmap().getWidth(), 0f);
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 6. 错切 - 垂直
- // matrix.setSkew(0f, 0.5f);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(0f, view.getImageBitmap().getHeight());
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // 7. 错切 - 水平 + 垂直
- // matrix.setSkew(0.5f, 0.5f);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(0f, view.getImageBitmap().getHeight());
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 8. 对称 (水平对称)
- // float matrix_values[] = {1f, 0f, 0f, 0f, -1f, 0f, 0f, 0f, 1f};
- // matrix.setValues(matrix_values);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(0f, view.getImageBitmap().getHeight() * 2f);
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 9. 对称 - 垂直
- // float matrix_values[] = {-1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 1f};
- // matrix.setValues(matrix_values);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(view.getImageBitmap().getWidth() * 2f, 0f);
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- // // 10. 对称(对称轴为直线y = x)
- // float matrix_values[] = {0f, -1f, 0f, -1f, 0f, 0f, 0f, 0f, 1f};
- // matrix.setValues(matrix_values);
- // // 下面的代码是为了查看matrix中的元素
- // float[] matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- //
- // // 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- // matrix.postTranslate(view.getImageBitmap().getHeight() + view.getImageBitmap().getWidth(),
- // view.getImageBitmap().getHeight() + view.getImageBitmap().getWidth());
- // view.setImageMatrix(matrix);
- //
- // // 下面的代码是为了查看matrix中的元素
- // matrixValues = new float[9];
- // matrix.getValues(matrixValues);
- // for(int i = 0; i < 3; ++i)
- // {
- // String temp = new String();
- // for(int j = 0; j < 3; ++j)
- // {
- // temp += matrixValues[3 * i + j ] + "\t";
- // }
- // Log.e("TestTransformMatrixActivity", temp);
- // }
- view.invalidate();
- }
- return true;
- }
- }</pre><br>
- <br>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">下面给出上述代码中,各种变换的具体结果及其对应的相关变换矩阵</span></p>
- <p><span style="font-size:13px">1. 平移</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321712352qQRu.gif" alt=""></span></p>
- <p><span style="font-size:13px">输出的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217123565Wwz.gif" alt=""></span></p>
- <p><span style="font-size:13px">请对照第一部分中的“一、平移变换”所讲的情形,考察上述矩阵的正确性。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">2. 旋转(围绕图像的中心点)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_132171250556xp.gif" alt=""></span></p>
- <p><span style="font-size:13px">输出的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321712512Yj1i.gif" alt=""></span></p>
- <p><span style="font-size:13px">它实际上是</span></p>
- <p><span style="font-size:13px">matrix.setRotate(45f,view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px">matrix.postTranslate(view.getImageBitmap().getWidth()* 1.5f, 0f);</span></p>
- <p><span style="font-size:13px">这两条语句综合作用的结果。根据第一部分中“二、旋转变换”里面关于围绕某点旋转的公式,</span></p>
- <p><span style="font-size:13px">matrix.setRotate(45f,view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px">所产生的转换矩阵就是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321712644I54M.gif" alt=""></span></p>
- <p><span style="font-size:13px">而matrix.postTranslate(view.getImageBitmap().getWidth()* 1.5f, 0f);的意思就是在上述矩阵的左边再乘以下面的矩阵:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217126508k4V.gif" alt=""></span></p>
- <p><span style="font-size:13px">关于post是左乘这一点,我们在前面的理论部分曾经提及过,后面我们还会专门讨论这个问题。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">所以它实际上就是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217126608wdT.gif" alt=""></span></p>
- <p><span style="font-size:13px">出去计算上的精度误差,我们可以看到我们计算出来的结果,和程序直接输出的结果是一致的。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">3. 旋转(围绕坐标原点旋转,在加上两次平移,效果同2)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_132171250556xp.gif" alt=""></span></p>
- <p><span style="font-size:13px">根据第一部分中“二、旋转变换”里面关于围绕某点旋转的解释,不难知道:</span></p>
- <p><span style="font-size:13px">matrix.setRotate(45f,view.getImageBitmap().getWidth() / 2f, view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px">等价于</span></p>
- <p><span style="font-size:13px">matrix.setRotate(45f);</span></p>
- <p><span style="font-size:13px">matrix.preTranslate(-1f* view.getImageBitmap().getWidth() / 2f, -1f *view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px">matrix.postTranslate((<strong>float</strong>)view.getImageBitmap().getWidth()/ 2f, (<strong>float</strong>)view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">其中matrix.setRotate(45f)对应的矩阵是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321712949GjN7.gif" alt=""></span></p>
- <p><span style="font-size:13px">matrix.preTranslate(-1f* view.getImageBitmap().getWidth() / 2f, -1f * view.getImageBitmap().getHeight()/ 2f)对应的矩阵是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321712956BNj8.gif" alt=""></span></p>
- <p><span style="font-size:13px">由于是preTranslate,是先乘,也就是右乘,即它应该出现在matrix.setRotate(45f)所对应矩阵的右侧。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">matrix.postTranslate((<strong>float</strong>)view.getImageBitmap().getWidth()/ 2f, (<strong>float</strong>)view.getImageBitmap().getHeight() / 2f)对应的矩阵是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321712963iNO1.gif" alt=""></span></p>
- <p><span style="font-size:13px">这次由于是postTranslate,是后乘,也就是左乘,即它应该出现在matrix.setRotate(45f)所对应矩阵的左侧。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">所以综合起来,</span></p>
- <p><span style="font-size:13px">matrix.setRotate(45f);</span></p>
- <p><span style="font-size:13px">matrix.preTranslate(-1f* view.getImageBitmap().getWidth() / 2f, -1f *view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px">matrix.postTranslate((<strong>float</strong>)view.getImageBitmap().getWidth()/ 2f, (<strong>float</strong>)view.getImageBitmap().getHeight() / 2f);</span></p>
- <p><span style="font-size:13px">对应的矩阵就是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713055HOOt.gif" alt=""></span></p>
- <p><span style="font-size:13px">这和下面这个矩阵(围绕图像中心顺时针旋转45度)其实是一样的:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713100VIOz.gif" alt=""></span></p>
- <p><span style="font-size:13px">因此,此处变换后的图像和2中变换后的图像时一样的。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">4. 缩放变换</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713185yKS7.gif" alt=""></span></p>
- <p><span style="font-size:13px">程序所输出的两个矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217131941R24.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中第二个矩阵,其实是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713201VRxs.gif" alt=""> </span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“三、缩放变换”和“一、平移变换”说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">5. 错切变换(水平错切)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_132171330766G0.gif" alt=""></span></p>
- <p><span style="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713314Dk69.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中,第二个矩阵其实是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"> <img src="http://hi.csdn.net/attachment/201111/19/0_1321713322PeML.gif" alt=""></span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">6. 错切变换(垂直错切)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713502Akg2.gif" alt=""></span></p>
- <p><span style="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713509Hz7p.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中,第二个矩阵其实是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713516TUvx.gif" alt=""></span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">7. 错切变换(水平+垂直错切)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321713655Qsij.gif" alt=""></span></p>
- <p><span style="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217136824kKR.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217136931vl4.gif" alt=""></span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">8. 对称变换(水平对称)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217141232rJI.gif" alt=""></span></p>
- <p><span style="font-size:13px">代码所输出的两个各矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321714133P0ha.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217141417Bi3.gif" alt=""> </span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">9. 对称变换(垂直对称)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321714261NN3V.gif" alt=""></span></p>
- <p><span style="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321714269Kqs4.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321714276ai2f.gif" alt=""> </span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">10. 对称变换(对称轴为直线<em>y = x</em>)</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217144950030.gif" alt=""></span></p>
- <p><span style="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_13217145038hN8.gif" alt=""></span></p>
- <p><span style="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321714509sBN4.gif" alt=""> </span></p>
- <p><span style="font-size:13px">大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">11. 关于先乘和后乘的问题</span></p>
- <p><span style="font-size:13px">由于矩阵的乘法运算不满足交换律,我们在前面曾经多次提及先乘、后乘的问题,即先乘就是矩阵运算中右乘,后乘就是矩阵运算中的左乘。其实先乘、后乘的概念是针对变换操作的时间先后而言的,左乘、右乘是针对矩阵运算的左右位置而言的。以第一部分“二、旋转变换”中围绕某点旋转的情况为例:</span></p>
- <p><span style="font-size:13px"><img src="http://hi.csdn.net/attachment/201111/19/0_1321714645396z.gif" alt=""> </span></p>
- <p><span style="font-size:13px">越靠近原图像中像素的矩阵,越先乘,越远离原图像中像素的矩阵,越后乘。事实上,图像处理时,矩阵的运算是从右边往左边方向进行运算的。这就形成了越在右边的矩阵(右乘),越先运算(先乘),反之亦然。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <p><span style="font-size:13px">当然,在实际中,如果首先指定了一个matrix,比如我们先setRotate(<img src="http://hi.csdn.net/attachment/201111/19/0_1321714654C9Xc.gif" alt="">),即指定了上面变换矩阵中,中间的那个矩阵,那么后续的矩阵到底是pre还是post运算,都是相对这个中间矩阵而言的。</span></p>
- <p><span style="font-size:13px"> </span></p>
- <span style="font-size:13px">所有这些,其实都是很自然的事情。</span>
- <pre></pre>
- <pre></pre>
- <pre></pre>
- <pre></pre>