Android中图像变换Matrix的原理分析

时间:2022-11-03 22:13:22

一  Matrix的数学原理

      在Android中,如果你用Matrix进行过图像处理,那么一定知道Matrix这个类。android中的Matrix是一个3 x 3的矩阵,其内容如下:

Android中图像变换Matrix的原理分析

Matrix的对图像的处理可分为四类基本变换: 

Translate           平移变换

Rotate                旋转变换

Scale                  缩放变换

Skew                  错切变换 

     从字面上理解,矩阵中的MSCALE用于处理缩放变换,MSKEW用于处理错切变换,MTRANS用于处理平移变换,MPERSP用于处理透视变换。实际中当然不能完全按照字面上的说法去理解Matrix。同时,在Android的文档中,未见到用Matrix进行透视变换的相关说明,所以本文也不讨论这方面的问题。

 

针对每种变换,Android提供了pre、set和post三种操作方式。其中

set用于设置Matrix中的值。

pre是先乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。先乘相当于矩阵运算中的右乘。

post是后乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。后乘相当于矩阵运算中的左乘。

 

除平移变换(Translate)外,旋转变换(Rotate)、缩放变换(Scale)和错切变换(Skew)都可以围绕一个中心点来进行,如果不指定,在默认情况下是围绕(0, 0)来进行相应的变换的。

 

下面我们来看看四种变换的具体情形。由于所有的图形都是有点组成,因此我们只需要考察一个点相关变换即可。

 

一 平移变换

     假定有一个点的坐标是Android中图像变换Matrix的原理分析 ,将其移动到Android中图像变换Matrix的原理分析,再假定在x轴和y轴方向移动的大小分别为:

Android中图像变换Matrix的原理分析

如下图所示:

Android中图像变换Matrix的原理分析

不难知道:

Android中图像变换Matrix的原理分析

如果用矩阵来表示的话,就可以写成:

Android中图像变换Matrix的原理分析

二  旋转变换

2.1    围绕坐标原点旋转:

假定有一个点Android中图像变换Matrix的原理分析,相对坐标原点顺时针旋转Android中图像变换Matrix的原理分析后的情形,同时假定P点离坐标原点的距离为r,如下图:

Android中图像变换Matrix的原理分析

那么,

Android中图像变换Matrix的原理分析

如果用矩阵,就可以表示为:

Android中图像变换Matrix的原理分析

2.2    围绕某个点旋转

如果是围绕某个点Android中图像变换Matrix的原理分析顺时针旋转Android中图像变换Matrix的原理分析,那么可以用矩阵表示为:

Android中图像变换Matrix的原理分析

可以化为:

Android中图像变换Matrix的原理分析

很显然,

1.   

  Android中图像变换Matrix的原理分析是将坐标原点移动到点Android中图像变换Matrix的原理分析后,Android中图像变换Matrix的原理分析 的新坐标。

2.     

Android中图像变换Matrix的原理分析

是将上一步变换后的Android中图像变换Matrix的原理分析,围绕新的坐标原点顺时针旋转Android中图像变换Matrix的原理分析 。

3.     

Android中图像变换Matrix的原理分析

经过上一步旋转变换后,再将坐标原点移回到原来的坐标原点。

      所以,围绕某一点进行旋转变换,可以分成3个步骤,即首先将坐标原点移至该点,然后围绕新的坐标原点进行旋转变换,再然后将坐标原点移回到原先的坐标原点。

三  缩放变换

      理论上而言,一个点是不存在什么缩放变换的,但考虑到所有图像都是由点组成,因此,如果图像在x轴和y轴方向分别放大k1k2倍的话,那么图像中的所有点的x坐标和y坐标均会分别放大k1k2倍,即

Android中图像变换Matrix的原理分析

用矩阵表示就是:

Android中图像变换Matrix的原理分析

缩放变换比较好理解,就不多说了。

四  错切变换

        错切变换(skew)在数学上又称为Shear mapping(可译为“剪切变换”)或者Transvection(缩并),它是一种比较特殊的线性变换。错切变换的效果就是让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移,且平移的大小和该点到x轴(或y轴)的垂直距离成正比。错切变换,属于等面积变换,即一个形状在错切变换的前后,其面积是相等的。

比如下图,各点的y坐标保持不变,但其x坐标则按比例发生了平移。这种情况将水平错切。

Android中图像变换Matrix的原理分析

下图各点的x坐标保持不变,但其y坐标则按比例发生了平移。这种情况叫垂直错切。

Android中图像变换Matrix的原理分析

假定一个点Android中图像变换Matrix的原理分析经过错切变换后得到Android中图像变换Matrix的原理分析,对于水平错切而言,应该有如下关系:

Android中图像变换Matrix的原理分析

用矩阵表示就是:

Android中图像变换Matrix的原理分析

扩展到3 x 3的矩阵就是下面这样的形式:

Android中图像变换Matrix的原理分析

同理,对于垂直错切,可以有:

Android中图像变换Matrix的原理分析

在数学上严格的错切变换就是上面这样的。在Android中除了有上面说到的情况外,还可以同时进行水平、垂直错切,那么形式上就是:

Android中图像变换Matrix的原理分析

五  对称变换

       除了上面讲到的4中基本变换外,事实上,我们还可以利用Matrix,进行对称变换。所谓对称变换,就是经过变化后的图像和原图像是关于某个对称轴是对称的。比如,某点Android中图像变换Matrix的原理分析经过对称变换后得到Android中图像变换Matrix的原理分析

如果对称轴是x轴,难么,

Android中图像变换Matrix的原理分析

用矩阵表示就是:

Android中图像变换Matrix的原理分析

如果对称轴是y轴,那么,

Android中图像变换Matrix的原理分析

用矩阵表示就是:

Android中图像变换Matrix的原理分析

如果对称轴是y = x,如图:

Android中图像变换Matrix的原理分析

那么(在这里利用的是斜率和中点坐标),

Android中图像变换Matrix的原理分析

说明直线y=x对称的两点,x和y互换就是对称点的坐标,如(x1,y1)关于y=x的对称点为(y1,x1)。

很容易可以解得:

Android中图像变换Matrix的原理分析

用矩阵表示就是:

Android中图像变换Matrix的原理分析

同样的道理,如果对称轴是y = -x,那么用矩阵表示就是:

Android中图像变换Matrix的原理分析

说明直线y=-x对称的,x和y互换,并且都要换号,如(x1,y1)关于y=-x的对称点为(-y1,-x1)。

特殊地,如果对称轴是y = kx,如下图:

Android中图像变换Matrix的原理分析

那么,

Android中图像变换Matrix的原理分析

说明若已知直线y=kx 和点P(x1,y1) 则对称点P2(x2,y2)有这么几个性质:与P相连的直线垂直所设直线y;P与P2的中点在直线y上 所以可列出方程 (y1+y2)/2=k/2(x1+x2),(y2-y1)/(x2-x1) = -1/k 联立解出来就可以了。

很容易可解得:

Android中图像变换Matrix的原理分析

用矩阵表示就是:

Android中图像变换Matrix的原理分析

k = 0时,即y = 0,也就是对称轴为x轴的情况;当k趋于无穷大时,即x = 0,也就是对称轴为y轴的情况;当k =1时,即y = x,也就是对称轴为y = x的情况;当k = -1时,即y = -x,也就是对称轴为y = -x的情况。不难验证,这和我们前面说到的4中具体情况是相吻合的。

 

如果对称轴是y = kx + b这样的情况,只需要在上面的基础上增加两次平移变换即可,即先将坐标原点移动到(0, b),然后做上面的关于y = kx的对称变换,再然后将坐标原点移回到原来的坐标原点即可。用矩阵表示大致是这样的:

Android中图像变换Matrix的原理分析

需要特别注意:在实际编程中,我们知道屏幕的y坐标的正向和数学中y坐标的正向刚好是相反的,所以在数学上y = x和屏幕上的y = -x才是真正的同一个东西,反之亦然。也就是说,如果要使图片在屏幕上看起来像按照数学意义上y = x对称,那么需使用这种转换:

Android中图像变换Matrix的原理分析

要使图片在屏幕上看起来像按照数学意义上y = -x对称,那么需使用这种转换:
Android中图像变换Matrix的原理分析

关于对称轴为y = kx y = kx + b的情况,同样需要考虑这方面的问题。

首发:http://blog.csdn.net/pathuang68/article/details/6991867