我就废话不多说了,大家还是直接看代码吧~
补充知识:sklearn中调用某个机器学习模型model.predict(x)和model.predict_proba(x)的区别
model.predict_proba(x)不同于model.predict(),它返回的预测值为获得所有结果的概率。(有多少个分类结果,每行就有多少个概率,对每个结果都有一个概率值,如0、1两分类就有两个概率)
我们直接上代码,通过具体例子来进一步讲解:
python3 代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 21:25:39 2019
@author: ZQQ
"""
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
import numpy as np
import warnings
warnings.filterwarnings( "ignore" )
# 这个方法只是解决了表面,没有根治
# 数据(特征,属性)
x_train = np.array([[ 1 , 2 , 3 ],
[ 1 , 5 , 4 ],
[ 2 , 2 , 2 ],
[ 4 , 5 , 6 ],
[ 3 , 5 , 4 ],
[ 1 , 7 , 2 ]])
# 数据的标签
y_train = np.array([ 1 , 0 , 1 , 1 , 0 , 0 ])
# 测试数据
x_test = np.array([[ 2 , 1 , 2 ],
[ 3 , 2 , 6 ],
[ 2 , 6 , 4 ]])
# 导入模型
model = LogisticRegression()
#model = RandomForestClassifier()
#model=XGBClassifier()
model.fit(x_train, y_train)
# 返回预测标签
print (model.predict(x_test))
print ( '---------------------------------------' )
# 返回预测属于某标签的概率
print (model.predict_proba(x_test))
|
运行结果:
分析结果:
使用model.predict() :
预测[2,1,2]为1类
预测[3,2,6]为1类
预测[2,6,4]为0类
使用model.predict_proba() :
预测[2,1,2]的标签是0的概率为0.19442289,1的概率为0.80557711
预测[3,2,6]的标签是0的概率为0.04163615,1的概率为0.95836385
预测[2,6,4]的标签是0的概率为0.83059324,1的概率为0.16940676
预测为0类的概率值和预测为1的概率值和为1
同理,如果标签继续增加,3类:0,1, 2
预测为0类的概率值:a
预测为1类的概率值:b
预测为2类的概率值:c
预测出来的概率值的和a+b+c=1
注:model.predict_proba()返回所有标签值可能性概率值,这些值是如何排序的呢?
返回模型中每个类的样本概率,其中类按类self.classes_进行排序。
通过numpy.unique(label)方法,对label中的所有标签值进行从小到大的去重排序。
得到一个从小到大唯一值的排序。这也就对应于model.predict_proba()的行返回结果。
以上这篇Python sklearn中的.fit与.predict的用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/helloworld0906/article/details/103214002