【POJ2976】Dropping tests - 01分数规划

时间:2022-09-16 22:57:04

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

【POJ2976】Dropping tests  - 01分数规划.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is 【POJ2976】Dropping tests  - 01分数规划. However, if you drop the third test, your cumulative average becomes 【POJ2976】Dropping tests  - 01分数规划.

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

题目大意

给出$n$个$a$和$b$,让选出$n-k$个使得$\frac{\sum a_i}{\sum b_i}$最大

思路

题目要求 $\frac{\sum a_i}{\sum b_i} \geq x$,$x$的最大值 ,也就是$\sum a_i - x \sum b_i \geq 0$ 二分完把$a_i-x b_i$排序取$n-k$个大的即可

/************************************************
*Author : lrj124
*Created Time : 2018.09.28.20:35
*Mail : 1584634848@qq.com
*Problem : poj2976
************************************************/
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn = 1000 + 10;
int n,k,a[maxn],b[maxn];
double tmp[maxn];
inline bool check(double x) {
for (int i = 1;i <= n;i++) tmp[i] = a[i]-x*b[i];
sort(tmp+1,tmp+n+1);
double ans = 0;
for (int i = k+1;i <= n;i++) ans += tmp[i];
return ans >= 0;
}
int main() {
while (cin >> n >> k) {
if (!n && !k) break;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) cin >> b[i];
double l = 0,r = 0x3f3f3f3f;
while (fabs(r-l) >= 1e-6) {
double mid = (l+r)/2;
if (check(mid)) l = mid;
else r = mid;
}
int ans = int(l*100+0.5);
printf("%d\n",ans);
}
return 0;
}

【POJ2976】Dropping tests - 01分数规划的更多相关文章

  1. &lbrack;poj2976&rsqb;Dropping tests&lpar;01分数规划,转化为二分解决或Dinkelbach算法&rpar;

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  2. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. POJ2976 Dropping tests&lpar;01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  4. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  5. Dropping tests&lpar;01分数规划&rpar;

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  6. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  7. POJ 2976 Dropping tests 01分数规划

    给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...

  8. &dollar;POJ&dollar;2976 &dollar;Dropping&bsol; tests&dollar; 01分数规划&plus;贪心

    正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...

  9. POJ - 2976 Dropping tests&lpar;01分数规划---二分&lpar;最大化平均值&rpar;&rpar;

    题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...

随机推荐

  1. HOJ 2713 Matrix1

    Matrix1 My Tags   (Edit)   Source : Classical Problem   Time limit : 5 sec   Memory limit : 64 M Sub ...

  2. Oracle SQL优化一(常见方法)

    1.表访问方式优化: a)普通表优先“Index Lookup 索引扫描”,避免全表扫描 大多数场景下,通过“Index Lookup 索引扫描”要比“Full Table Scan (FTS) 全表 ...

  3. Google Map API key 获取方法

    要想使用google map api 必须从google网站上获取key之后才有权限使用,但是要想申请key必须要有证明书,也就是所谓的MD5.下面一步一步来说明: 步骤1: 如果你使用的是eclip ...

  4. CentOs6&period;8安装Git并安装oh my zsh

    (一)git安装 1.下载git2.4.9或其他版本 Index of /pub/software/scm/git git各个版本下载链接: https://www.kernel.org/pub/so ...

  5. 禁止Chrome浏览器缓存的方法

    web开发的人经常chrome和firefox作为开发调试工具,有些时候需要禁止chrome浏览器缓存,最近也用到禁止缓存,以下介绍几种禁止chrome浏览器缓存的方法作为记录. HTML: < ...

  6. 用&lt&semi;pre&gt&semi;预格式化的文本

    被包围在 <pre> 标签 元素中的文本通常会保留空格和换行符.而文本也会呈现为等宽字体. 提示: <pre> 标签的一个常见应用就是用来表示计算机的源代码.

  7. related work

    Traditional approaches, e.g., genetic algorithm (GA) [2] and ant colony optimization (ACO) [3], can ...

  8. bzoj千题计划263:bzoj4870&colon; &lbrack;六省联考2017&rsqb;组合数问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...

  9. 代理服务器polipo;socks5代理转http代理

    安装: brew install polipo 使用: To have launchd start polipo now and restart at login: brew services sta ...

  10. 【BZOJ 2656】2656&colon; &lbrack;Zjoi2012&rsqb;数列&lpar;sequence&rpar; (高精度)

    2656: [Zjoi2012]数列(sequence) Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 1499  Solved: 786 Descri ...