I am looking for a non-recursive depth first search algorithm for a non-binary tree. Any help is very much appreciated.
我正在寻找一个非递归深度优先搜索算法的非二叉树。非常感谢您的帮助。
14 个解决方案
#1
239
DFS:
DFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.prepend( currentnode.children );
//do something
}
BFS:
石:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.append( currentnode.children );
//do something
}
The symmetry of the two is quite cool.
这两者的对称性很酷。
Update: As pointed out, take_first()
removes and returns the first element in the list.
更新:如前所述,take_first()删除并返回列表中的第一个元素。
#2
29
You would use a stack that holds the nodes that were not visited yet:
您将使用一个栈来保存尚未访问的节点:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
#3
25
If you have pointers to parent nodes, you can do it without additional memory.
如果您有指向父节点的指针,那么您可以在不增加内存的情况下完成它。
def dfs(root):
node = root
while True:
visit(node)
if node.first_child:
node = node.first_child # walk down
else:
while not node.next_sibling:
if node is root:
return
node = node.parent # walk up ...
node = node.next_sibling # ... and right
Note that if the child nodes are stored as an array rather than through sibling pointers, the next sibling can be found as:
注意,如果子节点以数组的形式存储,而不是通过兄弟指针,则可以找到下一个兄弟节点:
def next_sibling(node):
try:
i = node.parent.child_nodes.index(node)
return node.parent.child_nodes[i+1]
except (IndexError, AttributeError):
return None
#4
5
Use a stack to track your nodes
使用堆栈跟踪节点。
Stack<Node> s;
s.prepend(tree.head);
while(!s.empty) {
Node n = s.poll_front // gets first node
// do something with q?
for each child of n: s.prepend(child)
}
#5
2
An ES6 implementation based on biziclops great answer:
基于biziclop的ES6实现很好的答案:
root = {
text: "root",
children: [{
text: "c1",
children: [{
text: "c11"
}, {
text: "c12"
}]
}, {
text: "c2",
children: [{
text: "c21"
}, {
text: "c22"
}]
}, ]
}
console.log("DFS:")
DFS(root, node => node.children, node => console.log(node.text));
console.log("BFS:")
BFS(root, node => node.children, node => console.log(node.text));
function BFS(root, getChildren, visit) {
let nodesToVisit = [root];
while (nodesToVisit.length > 0) {
const currentNode = nodesToVisit.shift();
nodesToVisit = [
...nodesToVisit,
...(getChildren(currentNode) || []),
];
visit(currentNode);
}
}
function DFS(root, getChildren, visit) {
let nodesToVisit = [root];
while (nodesToVisit.length > 0) {
const currentNode = nodesToVisit.shift();
nodesToVisit = [
...(getChildren(currentNode) || []),
...nodesToVisit,
];
visit(currentNode);
}
}
#6
1
While "use a stack" might work as the answer to contrived interview question, in reality, it's just doing explicitly what a recursive program does behind the scenes.
虽然“使用堆栈”可以作为设计面试问题的答案,但在现实中,它只是明确地做了一个递归程序在幕后做什么。
Recursion uses the programs built-in stack. When you call a function, it pushes the arguments to the function onto the stack and when the function returns it does so by popping the program stack.
递归使用程序内置的堆栈。当你调用一个函数时,它将参数推到堆栈上,当函数返回时,它会弹出程序堆栈。
#7
1
PreOrderTraversal is same as DFS in binary tree. You can do the same recursion
taking care of Stack as below.
public void IterativePreOrder(Tree root)
{
if (root == null)
return;
Stack s<Tree> = new Stack<Tree>();
s.Push(root);
while (s.Count != 0)
{
Tree b = s.Pop();
Console.Write(b.Data + " ");
if (b.Right != null)
s.Push(b.Right);
if (b.Left != null)
s.Push(b.Left);
}
}
The general logic is, push a node(starting from root) into the Stack, Pop() it and Print() value. Then if it has children( left and right) push them into the stack - push Right first so that you will visit Left child first(after visiting node itself). When stack is empty() you will have visited all nodes in Pre-Order.
一般的逻辑是,将节点(从根开始)推入堆栈、Pop()和Print()值。然后,如果它有孩子(左和右)将它们推入堆栈——先右推,这样您就会先访问左子(访问节点本身之后)。当堆栈为空()时,您将访问所有的节点。
#8
1
Suppose you want to execute a notification when each node in a graph is visited. The simple recursive implementation is:
假设您希望在访问图中的每个节点时执行通知。简单的递归实现是:
void DFSRecursive(Node n, Set<Node> visited) {
visited.add(n);
for (Node x : neighbors_of(n)) { // iterate over all neighbors
if (!visited.contains(x)) {
DFSRecursive(x, visited);
}
}
OnVisit(n); // callback to say node is finally visited, after all its non-visited neighbors
}
Ok, now you want a stack-based implementation because your example doesn't work. Complex graphs might for instance cause this to blow the stack of your program and you need to implement a non-recursive version. The biggest issue is to know when to issue a notification.
现在,您需要基于堆栈的实现,因为您的示例不起作用。例如,复杂的图可能会使程序的堆栈崩溃,而您需要实现非递归版本。最大的问题是知道何时发出通知。
The following pseudo-code works (mix of Java and C++ for readability):
下面的伪代码工作(Java和c++的可读性):
void DFS(Node root) {
Set<Node> visited;
Set<Node> toNotify; // nodes we want to notify
Stack<Node> stack;
stack.add(root);
toNotify.add(root); // we won't pop nodes from this until DFS is done
while (!stack.empty()) {
Node current = stack.pop();
visited.add(current);
for (Node x : neighbors_of(current)) {
if (!visited.contains(x)) {
stack.add(x);
toNotify.add(x);
}
}
}
// Now issue notifications. toNotifyStack might contain duplicates (will never
// happen in a tree but easily happens in a graph)
Set<Node> notified;
while (!toNotify.empty()) {
Node n = toNotify.pop();
if (!toNotify.contains(n)) {
OnVisit(n); // issue callback
toNotify.add(n);
}
}
It looks complicated but the extra logic needed for issuing notifications exists because you need to notify in reverse order of visit - DFS starts at root but notifies it last, unlike BFS which is very simple to implement.
它看起来很复杂,但是发出通知所需的额外逻辑是存在的,因为您需要以相反的顺序通知访问—DFS从根开始,但最后通知它,不像BFS,它很容易实现。
For kicks, try following graph: nodes are s, t, v and w. directed edges are: s->t, s->v, t->w, v->w, and v->t. Run your own implementation of DFS and the order in which nodes should be visited must be: w, t, v, s A clumsy implementation of DFS would maybe notify t first and that indicates a bug. A recursive implementation of DFS would always reach w last.
对于踢腿,可以尝试以下图:节点为s、t、v、w向边为:s->t、s->v、t->w、v->w、v->t。运行您自己的DFS实现和访问节点的顺序必须是:w、t、v, DFS的笨拙实现可能会首先通知t,这表示bug。DFS的递归实现总是会达到w的最后。
#9
1
Non-recursive DFS using ES6 generators
使用ES6生成器的非递归DFS。
class Node {
constructor(name, childNodes) {
this.name = name;
this.childNodes = childNodes;
this.visited = false;
}
}
function *dfs(s) {
let stack = [];
stack.push(s);
stackLoop: while (stack.length) {
let u = stack[stack.length - 1]; // peek
if (!u.visited) {
u.visited = true; // grey - visited
yield u;
}
for (let v of u.childNodes) {
if (!v.visited) {
stack.push(v);
continue stackLoop;
}
}
stack.pop(); // black - all reachable descendants were processed
}
}
It deviates from typical non-recursive DFS to easily detect when all reachable descendants of given node were processed and to maintain the current path in the list/stack.
它偏离了典型的非递归DFS,以便在处理给定节点的所有可到达的后代并维护列表/堆栈中的当前路径时轻松地检测。
#10
0
You can use a stack. I implemented graphs with Adjacency Matrix:
您可以使用堆栈。我用邻接矩阵实现了图形:
void DFS(int current){
for(int i=1; i<N; i++) visit_table[i]=false;
myStack.push(current);
cout << current << " ";
while(!myStack.empty()){
current = myStack.top();
for(int i=0; i<N; i++){
if(AdjMatrix[current][i] == 1){
if(visit_table[i] == false){
myStack.push(i);
visit_table[i] = true;
cout << i << " ";
}
break;
}
else if(!myStack.empty())
myStack.pop();
}
}
}
#11
0
DFS iterative in Java:
DFS在Java迭代:
//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
if (root == null)
return false;
Stack<Node> _stack = new Stack<Node>();
_stack.push(root);
while (_stack.size() > 0) {
Node temp = _stack.peek();
if (temp.data == target)
return true;
if (temp.left != null)
_stack.push(temp.left);
else if (temp.right != null)
_stack.push(temp.right);
else
_stack.pop();
}
return false;
}
#12
0
http://www.youtube.com/watch?v=zLZhSSXAwxI
http://www.youtube.com/watch?v=zLZhSSXAwxI
Just watched this video and came out with implementation. It looks easy for me to understand. Please critique this.
只是看了这段视频,然后就出来了。我很容易理解。请批评。
visited_node={root}
stack.push(root)
while(!stack.empty){
unvisited_node = get_unvisited_adj_nodes(stack.top());
If (unvisited_node!=null){
stack.push(unvisited_node);
visited_node+=unvisited_node;
}
else
stack.pop()
}
#13
0
Using Stack
, here are the steps to follow: Push the first vertex on the stack then,
使用堆栈,这里是下面的步骤:在堆栈上按第一个顶点,
- If possible, visit an adjacent unvisited vertex, mark it, and push it on the stack.
- 如果可能,访问一个相邻的未访问顶点,标记它,并将其推到堆栈上。
- If you can’t follow step 1, then, if possible, pop a vertex off the stack.
- 如果您不能遵循步骤1,那么,如果可能的话,从堆栈中弹出一个顶点。
- If you can’t follow step 1 or step 2, you’re done.
- 如果你不能遵循步骤1或步骤2,你就完成了。
Here's the Java program following the above steps:
下面是Java程序的步骤:
public void searchDepthFirst() {
// begin at vertex 0
vertexList[0].wasVisited = true;
displayVertex(0);
stack.push(0);
while (!stack.isEmpty()) {
int adjacentVertex = getAdjacentUnvisitedVertex(stack.peek());
// if no such vertex
if (adjacentVertex == -1) {
stack.pop();
} else {
vertexList[adjacentVertex].wasVisited = true;
// Do something
stack.push(adjacentVertex);
}
}
// stack is empty, so we're done, reset flags
for (int j = 0; j < nVerts; j++)
vertexList[j].wasVisited = false;
}
#14
0
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
Node node = stack.pop();
System.out.print(node.getData() + " ");
Node right = node.getRight();
if (right != null) {
stack.push(right);
}
Node left = node.getLeft();
if (left != null) {
stack.push(left);
}
}
#1
239
DFS:
DFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.prepend( currentnode.children );
//do something
}
BFS:
石:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.append( currentnode.children );
//do something
}
The symmetry of the two is quite cool.
这两者的对称性很酷。
Update: As pointed out, take_first()
removes and returns the first element in the list.
更新:如前所述,take_first()删除并返回列表中的第一个元素。
#2
29
You would use a stack that holds the nodes that were not visited yet:
您将使用一个栈来保存尚未访问的节点:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
#3
25
If you have pointers to parent nodes, you can do it without additional memory.
如果您有指向父节点的指针,那么您可以在不增加内存的情况下完成它。
def dfs(root):
node = root
while True:
visit(node)
if node.first_child:
node = node.first_child # walk down
else:
while not node.next_sibling:
if node is root:
return
node = node.parent # walk up ...
node = node.next_sibling # ... and right
Note that if the child nodes are stored as an array rather than through sibling pointers, the next sibling can be found as:
注意,如果子节点以数组的形式存储,而不是通过兄弟指针,则可以找到下一个兄弟节点:
def next_sibling(node):
try:
i = node.parent.child_nodes.index(node)
return node.parent.child_nodes[i+1]
except (IndexError, AttributeError):
return None
#4
5
Use a stack to track your nodes
使用堆栈跟踪节点。
Stack<Node> s;
s.prepend(tree.head);
while(!s.empty) {
Node n = s.poll_front // gets first node
// do something with q?
for each child of n: s.prepend(child)
}
#5
2
An ES6 implementation based on biziclops great answer:
基于biziclop的ES6实现很好的答案:
root = {
text: "root",
children: [{
text: "c1",
children: [{
text: "c11"
}, {
text: "c12"
}]
}, {
text: "c2",
children: [{
text: "c21"
}, {
text: "c22"
}]
}, ]
}
console.log("DFS:")
DFS(root, node => node.children, node => console.log(node.text));
console.log("BFS:")
BFS(root, node => node.children, node => console.log(node.text));
function BFS(root, getChildren, visit) {
let nodesToVisit = [root];
while (nodesToVisit.length > 0) {
const currentNode = nodesToVisit.shift();
nodesToVisit = [
...nodesToVisit,
...(getChildren(currentNode) || []),
];
visit(currentNode);
}
}
function DFS(root, getChildren, visit) {
let nodesToVisit = [root];
while (nodesToVisit.length > 0) {
const currentNode = nodesToVisit.shift();
nodesToVisit = [
...(getChildren(currentNode) || []),
...nodesToVisit,
];
visit(currentNode);
}
}
#6
1
While "use a stack" might work as the answer to contrived interview question, in reality, it's just doing explicitly what a recursive program does behind the scenes.
虽然“使用堆栈”可以作为设计面试问题的答案,但在现实中,它只是明确地做了一个递归程序在幕后做什么。
Recursion uses the programs built-in stack. When you call a function, it pushes the arguments to the function onto the stack and when the function returns it does so by popping the program stack.
递归使用程序内置的堆栈。当你调用一个函数时,它将参数推到堆栈上,当函数返回时,它会弹出程序堆栈。
#7
1
PreOrderTraversal is same as DFS in binary tree. You can do the same recursion
taking care of Stack as below.
public void IterativePreOrder(Tree root)
{
if (root == null)
return;
Stack s<Tree> = new Stack<Tree>();
s.Push(root);
while (s.Count != 0)
{
Tree b = s.Pop();
Console.Write(b.Data + " ");
if (b.Right != null)
s.Push(b.Right);
if (b.Left != null)
s.Push(b.Left);
}
}
The general logic is, push a node(starting from root) into the Stack, Pop() it and Print() value. Then if it has children( left and right) push them into the stack - push Right first so that you will visit Left child first(after visiting node itself). When stack is empty() you will have visited all nodes in Pre-Order.
一般的逻辑是,将节点(从根开始)推入堆栈、Pop()和Print()值。然后,如果它有孩子(左和右)将它们推入堆栈——先右推,这样您就会先访问左子(访问节点本身之后)。当堆栈为空()时,您将访问所有的节点。
#8
1
Suppose you want to execute a notification when each node in a graph is visited. The simple recursive implementation is:
假设您希望在访问图中的每个节点时执行通知。简单的递归实现是:
void DFSRecursive(Node n, Set<Node> visited) {
visited.add(n);
for (Node x : neighbors_of(n)) { // iterate over all neighbors
if (!visited.contains(x)) {
DFSRecursive(x, visited);
}
}
OnVisit(n); // callback to say node is finally visited, after all its non-visited neighbors
}
Ok, now you want a stack-based implementation because your example doesn't work. Complex graphs might for instance cause this to blow the stack of your program and you need to implement a non-recursive version. The biggest issue is to know when to issue a notification.
现在,您需要基于堆栈的实现,因为您的示例不起作用。例如,复杂的图可能会使程序的堆栈崩溃,而您需要实现非递归版本。最大的问题是知道何时发出通知。
The following pseudo-code works (mix of Java and C++ for readability):
下面的伪代码工作(Java和c++的可读性):
void DFS(Node root) {
Set<Node> visited;
Set<Node> toNotify; // nodes we want to notify
Stack<Node> stack;
stack.add(root);
toNotify.add(root); // we won't pop nodes from this until DFS is done
while (!stack.empty()) {
Node current = stack.pop();
visited.add(current);
for (Node x : neighbors_of(current)) {
if (!visited.contains(x)) {
stack.add(x);
toNotify.add(x);
}
}
}
// Now issue notifications. toNotifyStack might contain duplicates (will never
// happen in a tree but easily happens in a graph)
Set<Node> notified;
while (!toNotify.empty()) {
Node n = toNotify.pop();
if (!toNotify.contains(n)) {
OnVisit(n); // issue callback
toNotify.add(n);
}
}
It looks complicated but the extra logic needed for issuing notifications exists because you need to notify in reverse order of visit - DFS starts at root but notifies it last, unlike BFS which is very simple to implement.
它看起来很复杂,但是发出通知所需的额外逻辑是存在的,因为您需要以相反的顺序通知访问—DFS从根开始,但最后通知它,不像BFS,它很容易实现。
For kicks, try following graph: nodes are s, t, v and w. directed edges are: s->t, s->v, t->w, v->w, and v->t. Run your own implementation of DFS and the order in which nodes should be visited must be: w, t, v, s A clumsy implementation of DFS would maybe notify t first and that indicates a bug. A recursive implementation of DFS would always reach w last.
对于踢腿,可以尝试以下图:节点为s、t、v、w向边为:s->t、s->v、t->w、v->w、v->t。运行您自己的DFS实现和访问节点的顺序必须是:w、t、v, DFS的笨拙实现可能会首先通知t,这表示bug。DFS的递归实现总是会达到w的最后。
#9
1
Non-recursive DFS using ES6 generators
使用ES6生成器的非递归DFS。
class Node {
constructor(name, childNodes) {
this.name = name;
this.childNodes = childNodes;
this.visited = false;
}
}
function *dfs(s) {
let stack = [];
stack.push(s);
stackLoop: while (stack.length) {
let u = stack[stack.length - 1]; // peek
if (!u.visited) {
u.visited = true; // grey - visited
yield u;
}
for (let v of u.childNodes) {
if (!v.visited) {
stack.push(v);
continue stackLoop;
}
}
stack.pop(); // black - all reachable descendants were processed
}
}
It deviates from typical non-recursive DFS to easily detect when all reachable descendants of given node were processed and to maintain the current path in the list/stack.
它偏离了典型的非递归DFS,以便在处理给定节点的所有可到达的后代并维护列表/堆栈中的当前路径时轻松地检测。
#10
0
You can use a stack. I implemented graphs with Adjacency Matrix:
您可以使用堆栈。我用邻接矩阵实现了图形:
void DFS(int current){
for(int i=1; i<N; i++) visit_table[i]=false;
myStack.push(current);
cout << current << " ";
while(!myStack.empty()){
current = myStack.top();
for(int i=0; i<N; i++){
if(AdjMatrix[current][i] == 1){
if(visit_table[i] == false){
myStack.push(i);
visit_table[i] = true;
cout << i << " ";
}
break;
}
else if(!myStack.empty())
myStack.pop();
}
}
}
#11
0
DFS iterative in Java:
DFS在Java迭代:
//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
if (root == null)
return false;
Stack<Node> _stack = new Stack<Node>();
_stack.push(root);
while (_stack.size() > 0) {
Node temp = _stack.peek();
if (temp.data == target)
return true;
if (temp.left != null)
_stack.push(temp.left);
else if (temp.right != null)
_stack.push(temp.right);
else
_stack.pop();
}
return false;
}
#12
0
http://www.youtube.com/watch?v=zLZhSSXAwxI
http://www.youtube.com/watch?v=zLZhSSXAwxI
Just watched this video and came out with implementation. It looks easy for me to understand. Please critique this.
只是看了这段视频,然后就出来了。我很容易理解。请批评。
visited_node={root}
stack.push(root)
while(!stack.empty){
unvisited_node = get_unvisited_adj_nodes(stack.top());
If (unvisited_node!=null){
stack.push(unvisited_node);
visited_node+=unvisited_node;
}
else
stack.pop()
}
#13
0
Using Stack
, here are the steps to follow: Push the first vertex on the stack then,
使用堆栈,这里是下面的步骤:在堆栈上按第一个顶点,
- If possible, visit an adjacent unvisited vertex, mark it, and push it on the stack.
- 如果可能,访问一个相邻的未访问顶点,标记它,并将其推到堆栈上。
- If you can’t follow step 1, then, if possible, pop a vertex off the stack.
- 如果您不能遵循步骤1,那么,如果可能的话,从堆栈中弹出一个顶点。
- If you can’t follow step 1 or step 2, you’re done.
- 如果你不能遵循步骤1或步骤2,你就完成了。
Here's the Java program following the above steps:
下面是Java程序的步骤:
public void searchDepthFirst() {
// begin at vertex 0
vertexList[0].wasVisited = true;
displayVertex(0);
stack.push(0);
while (!stack.isEmpty()) {
int adjacentVertex = getAdjacentUnvisitedVertex(stack.peek());
// if no such vertex
if (adjacentVertex == -1) {
stack.pop();
} else {
vertexList[adjacentVertex].wasVisited = true;
// Do something
stack.push(adjacentVertex);
}
}
// stack is empty, so we're done, reset flags
for (int j = 0; j < nVerts; j++)
vertexList[j].wasVisited = false;
}
#14
0
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
Node node = stack.pop();
System.out.print(node.getData() + " ");
Node right = node.getRight();
if (right != null) {
stack.push(right);
}
Node left = node.getLeft();
if (left != null) {
stack.push(left);
}
}