SM3是**采用的一种密码散列函数标准,由国家密码管理局于2010年12月17日发布。主要用于报告文件数字签名及验证。
Python3代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
from math import ceil
##############################################################################
#
# 国产SM3加密算法
#
##############################################################################
IV = "7380166f 4914b2b9 172442d7 da8a0600 a96f30bc 163138aa e38dee4d b0fb0e4e"
IV = int (IV.replace( " " , ""), 16 )
a = []
for i in range ( 0 , 8 ):
a.append( 0 )
a[i] = (IV >> (( 7 - i) * 32 )) & 0xFFFFFFFF
IV = a
def out_hex(list1):
for i in list1:
print ( "%08x" % i)
print ( "\n" )
def rotate_left(a, k):
k = k % 32
return ((a << k) & 0xFFFFFFFF ) | ((a & 0xFFFFFFFF ) >> ( 32 - k))
T_j = []
for i in range ( 0 , 16 ):
T_j.append( 0 )
T_j[i] = 0x79cc4519
for i in range ( 16 , 64 ):
T_j.append( 0 )
T_j[i] = 0x7a879d8a
def FF_j(X, Y, Z, j):
if 0 < = j and j < 16 :
ret = X ^ Y ^ Z
elif 16 < = j and j < 64 :
ret = (X & Y) | (X & Z) | (Y & Z)
return ret
def GG_j(X, Y, Z, j):
if 0 < = j and j < 16 :
ret = X ^ Y ^ Z
elif 16 < = j and j < 64 :
# ret = (X | Y) & ((2 ** 32 - 1 - X) | Z)
ret = (X & Y) | ((~ X) & Z)
return ret
def P_0(X):
return X ^ (rotate_left(X, 9 )) ^ (rotate_left(X, 17 ))
def P_1(X):
return X ^ (rotate_left(X, 15 )) ^ (rotate_left(X, 23 ))
def CF(V_i, B_i):
W = []
for i in range ( 16 ):
weight = 0x1000000
data = 0
for k in range (i * 4 , (i + 1 ) * 4 ):
data = data + B_i[k] * weight
weight = int (weight / 0x100 )
W.append(data)
for j in range ( 16 , 68 ):
W.append( 0 )
W[j] = P_1(W[j - 16 ] ^ W[j - 9 ] ^ (rotate_left(W[j - 3 ], 15 ))) ^ (rotate_left(W[j - 13 ], 7 )) ^ W[j - 6 ]
str1 = "%08x" % W[j]
W_1 = []
for j in range ( 0 , 64 ):
W_1.append( 0 )
W_1[j] = W[j] ^ W[j + 4 ]
str1 = "%08x" % W_1[j]
A, B, C, D, E, F, G, H = V_i
"""
print "00",
out_hex([A, B, C, D, E, F, G, H])
"""
for j in range ( 0 , 64 ):
SS1 = rotate_left(((rotate_left(A, 12 )) + E + (rotate_left(T_j[j], j))) & 0xFFFFFFFF , 7 )
SS2 = SS1 ^ (rotate_left(A, 12 ))
TT1 = (FF_j(A, B, C, j) + D + SS2 + W_1[j]) & 0xFFFFFFFF
TT2 = (GG_j(E, F, G, j) + H + SS1 + W[j]) & 0xFFFFFFFF
D = C
C = rotate_left(B, 9 )
B = A
A = TT1
H = G
G = rotate_left(F, 19 )
F = E
E = P_0(TT2)
A = A & 0xFFFFFFFF
B = B & 0xFFFFFFFF
C = C & 0xFFFFFFFF
D = D & 0xFFFFFFFF
E = E & 0xFFFFFFFF
F = F & 0xFFFFFFFF
G = G & 0xFFFFFFFF
H = H & 0xFFFFFFFF
V_i_1 = []
V_i_1.append(A ^ V_i[ 0 ])
V_i_1.append(B ^ V_i[ 1 ])
V_i_1.append(C ^ V_i[ 2 ])
V_i_1.append(D ^ V_i[ 3 ])
V_i_1.append(E ^ V_i[ 4 ])
V_i_1.append(F ^ V_i[ 5 ])
V_i_1.append(G ^ V_i[ 6 ])
V_i_1.append(H ^ V_i[ 7 ])
return V_i_1
def hash_msg(msg):
# print(msg)
len1 = len (msg)
reserve1 = len1 % 64
msg.append( 0x80 )
reserve1 = reserve1 + 1
# 56-64, add 64 byte
range_end = 56
if reserve1 > range_end:
range_end = range_end + 64
for i in range (reserve1, range_end):
msg.append( 0x00 )
bit_length = (len1) * 8
bit_length_str = [bit_length % 0x100 ]
for i in range ( 7 ):
bit_length = int (bit_length / 0x100 )
bit_length_str.append(bit_length % 0x100 )
for i in range ( 8 ):
msg.append(bit_length_str[ 7 - i])
# print(msg)
group_count = round ( len (msg) / 64 )
B = []
for i in range ( 0 , group_count):
B.append(msg[i * 64 :(i + 1 ) * 64 ])
V = []
V.append(IV)
for i in range ( 0 , group_count):
V.append(CF(V[i], B[i]))
y = V[i + 1 ]
result = ""
for i in y:
result = '%s%08x' % (result, i)
return result
def str2byte(msg): # 字符串转换成byte数组
ml = len (msg)
msg_byte = []
msg_bytearray = msg # 如果加密对象是字符串,则在此对msg做encode()编码即可,否则不编码
for i in range (ml):
msg_byte.append(msg_bytearray[i])
return msg_byte
def byte2str(msg): # byte数组转字符串
ml = len (msg)
str1 = b""
for i in range (ml):
str1 + = b '%c' % msg[i]
return str1.decode( 'utf-8' )
def hex2byte(msg): # 16进制字符串转换成byte数组
ml = len (msg)
if ml % 2 ! = 0 :
msg = '0' + msg
ml = int ( len (msg) / 2 )
msg_byte = []
for i in range (ml):
msg_byte.append( int (msg[i * 2 :i * 2 + 2 ], 16 ))
return msg_byte
def byte2hex(msg): # byte数组转换成16进制字符串
ml = len (msg)
hexstr = ""
for i in range (ml):
hexstr = hexstr + ( '%02x' % msg[i])
return hexstr
def KDF(Z, klen): # Z为16进制表示的比特串(str),klen为密钥长度(单位byte)
klen = int (klen)
ct = 0x00000001
rcnt = ceil(klen / 32 )
Zin = hex2byte(Z)
Ha = ""
for i in range ( int (rcnt)):
msg = Zin + hex2byte( '%08x' % ct)
# print(msg)
Ha = Ha + hash_msg(msg)
# print(Ha)
ct + = 1
return Ha[ 0 : klen * 2 ]
def sm3_hash(msg, Hexstr = 0 ):
"""
封装方法,外部调用
:param msg: 二进制流(如若需要传入字符串,则把str2byte方法里msg做encode()编码一下,否则不编码)
:param Hexstr: 0
:return: 64位SM3加密结果
"""
if (Hexstr):
msg_byte = hex2byte(msg)
else :
msg_byte = str2byte(msg)
return hash_msg(msg_byte)
if __name__ = = '__main__' :
print (sm3_hash(b 'SM3Test' )) # 打印结果:901053b4681483b737dd2dd9f9a7f56805aa1b03337f8c1abb763a96776b8905
|
以上就是Python 实现国产SM3加密算法的示例代码的详细内容,更多关于Python 实现国产SM3加密算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/wcwnina/p/13604915.html