模糊K均值算法python代码实现(FCM)

时间:2021-10-01 22:25:51
# -*- coding:utf-8 -*-
from pylab import *
from numpy import*
import pandas as pd
import numpy as np
import operator
import math
import matplotlib.pyplot as plt
import random
#数据保存在.csv文件中
df_full = pd.read_csv("result.csv")
columns = list(df_full.columns)
features = columns[:len(columns)-1]
#class_labels = list(df_full[columns[-1]])
df = df_full[features]
# 维度
num_attr = len(df.columns) - 1
# 分类数
k =3
# 最大迭代数
MAX_ITER = 100
# 样本数
n = len(df) #the number of row
# 模糊参数
m = 2.00

#初始化模糊矩阵
def initializeMembershipMatrix():
membership_mat = list()
for i in range(n):
random_num_list = [random.random() for i in range(k)]
summation = sum(random_num_list)
temp_list = [x/summation for x in random_num_list]#首先归一化
membership_mat.append(temp_list)
return membership_mat

#计算类中心点
def calculateClusterCenter(membership_mat):
cluster_mem_val = zip(*membership_mat)
cluster_centers = list()
cluster_mem_val_list = list(cluster_mem_val)
for j in range(k):
x=cluster_mem_val_list[j]
xraised = [e ** m for e in x]
denominator = sum(xraised)
temp_num = list()
for i in range(n):
data_point = list(df.iloc[i])
prod = [xraised[i] * val for val in data_point]
temp_num.append(prod)
numerator = map(sum, zip(*temp_num))
center = [z/denominator for z in numerator]#每一维都要计算。
cluster_centers.append(center)
return cluster_centers

#更新隶属度
def updateMembershipValue(membership_mat, cluster_centers):
# p = float(2/(m-1))
data=[]
for i in range(n):
x = list(df.iloc[i])#取出文件中的每一行数据
data.append(x)
distances = [np.linalg.norm(list(map(operator.sub, x, cluster_centers[j]))) for j in range(k)]
for j in range(k):
den = sum([math.pow(float(distances[j]/distances[c]), 2) for c in range(k)])
membership_mat[i][j] = float(1/den)
return membership_mat,data

#得到聚类结果
def getClusters(membership_mat):
cluster_labels = list()
for i in range(n):
max_val, idx = max((val, idx) for (idx, val) in enumerate(membership_mat[i]))
cluster_labels.append(idx)
return cluster_labels

def fuzzyCMeansClustering():
# 主程序
membership_mat = initializeMembershipMatrix()
curr = 0
while curr <= MAX_ITER:#最大迭代次数
cluster_centers = calculateClusterCenter(membership_mat)
membership_mat,data = updateMembershipValue(membership_mat, cluster_centers)
cluster_labels = getClusters(membership_mat)
curr += 1
print(membership_mat)
return cluster_labels, cluster_centers,data,membership_mat

def xie_beni(membership_mat,center,data):
sum_cluster_distance=0
min_cluster_center_distance=inf
for i in range(k):
for j in range(n):
sum_cluster_distance=sum_cluster_distance + membership_mat[j][i]** 2 * sum(power(data[j,:]- center[i,:],2))#计算类一致性
for i in range(k-1):
for j in range(i+1,k):
cluster_center_distance=sum(power(center[i,:]-center[j,:],2))#计算类间距离
if cluster_center_distance<min_cluster_center_distance:
min_cluster_center_distance=cluster_center_distance
return sum_cluster_distance/(n*min_cluster_center_distance)
labels,centers,data,membership= fuzzyCMeansClustering()
print(labels)
print(centers)
center_array=array(centers)
label=array(labels)
datas=array(data)

#Xie-Beni聚类有效性
print("聚类有效性:",xie_beni(membership,center_array,datas))
xlim(0, 10)
ylim(0, 10)
#做散点图
f1 = plt.figure(1)
plt.scatter(datas[nonzero(label==0),0],datas[nonzero(label==0),1],marker='o',color='r',label='0',s=30)
plt.scatter(datas[nonzero(label==1),0],datas[nonzero(label==1),1],marker='+',color='b',label='1',s=30)
plt.scatter(datas[nonzero(label==2),0],datas[nonzero(label==2),1],marker='*',color='g',label='2',s=30)
plt.scatter(center_array[:,0],center_array[:,1],marker = 'x', color = 'm', s = 50)
plt.show()

程序运行结果:

模糊K均值算法python代码实现(FCM)