1、题目大意:给个树,然后树上每个点都有颜色,然后会有路径的修改,有个询问,询问一条路径上的颜色分成了几段
2、分析:首先这个修改是树剖可以做的,对吧,但是这个分成了几段怎么搞呢,我们的树剖的不是要建线段树吗
我们的线段树存这样的几个值,一个是这个区间被分成了几段,另外就是这个区间的最左边的颜色和最右边的颜色
这样,我们在区间合并的时候把两个区间的段数加起来
然后用左区间的右端点和右区间的左端点如果相同就-1就可以了,那么这道题就做完了
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; #define M 1000000 struct node{ int l, ans, r; }; struct hehe{ int Top[M], Size[M], High[M], Fa[M], num[M], value[M]; node q[M]; int lazy[M]; int tot, head[M], Next[M], son[M]; int ST_tot; int n; inline void init(){ ST_tot = tot = 0; for(int i = 1; i < M; i ++) lazy[i] = -1; memset(head, -1, sizeof(head)); Top[1] = 1; } inline void pushdown(int o){ if(lazy[o] != -1){ lazy[2 * o] = lazy[2 * o + 1] = lazy[o]; q[2 * o].l = q[2 * o].r = q[2 * o + 1].l = q[2 * o + 1].r = lazy[o]; q[2 * o].ans = q[2 * o + 1].ans = 1; lazy[o] = -1; } } inline void add(int l, int r, int o, int x, int y, int k){ if(x <= l && r <= y){ q[o].l = q[o].r = k; q[o].ans = 1; lazy[o] = k; return; } int mid = (l + r) / 2; pushdown(o); if(x <= mid) add(l, mid, 2 * o, x, y, k); if(y > mid) add(mid + 1, r, 2 * o + 1, x, y, k); q[o].l = q[2 * o].l; q[o].r = q[2 * o + 1].r; q[o].ans = q[2 * o].ans + q[2 * o + 1].ans; if(q[2 * o].r == q[2 * o + 1].l) q[o].ans --; } inline node query(int l, int r, int o, int x, int y){ if(x <= l && r <= y){ return q[o]; } pushdown(o); int mid = (l + r) / 2; if(x <= mid && y <= mid) return query(l, mid, 2 * o, x, y); else if(x > mid && y > mid) return query(mid + 1, r, 2 * o + 1, x, y); else{ node ll = query(l, mid, 2 * o, x, y); node rr = query(mid + 1, r, 2 * o + 1, x, y); node ret; ret.l = ll.l; ret.r = rr.r; ret.ans = ll.ans + rr.ans; if(ll.r == rr. l) ret.ans --; return ret; } } inline void insert(int x, int y){ tot ++; son[tot] = y; Next[tot] = head[x]; head[x] = tot; } inline void dfs1(int x, int fa, int height){ Fa[x] = fa; High[x] = height; for(int i = head[x]; i != -1; i = Next[i]) if(son[i] != fa){ dfs1(son[i], x, height + 1); Size[x] += Size[son[i]]; } Size[x] ++; } inline void dfs2(int x, int fa){ ++ ST_tot; num[x] = ST_tot; add(1, n, 1, ST_tot, ST_tot, value[x]); int o = -1, sos = 0; for(int i = head[x]; i != -1; i = Next[i]) if(son[i] != fa){ if(Size[son[i]] > sos){ sos = Size[son[i]]; o = i; } } if(o != -1){ Top[son[o]] = Top[x]; dfs2(son[o], x); } for(int i = head[x]; i != -1; i = Next[i]) if(son[i] != fa && i != o){ Top[son[i]] = son[i]; dfs2(son[i], x); } } inline void real_add(int x, int y, int k){ while(Top[x] != Top[y]){ if(High[Top[x]] < High[Top[y]]) swap(x, y); add(1, n, 1, num[Top[x]], num[x], k); x = Fa[Top[x]]; } if(High[x] < High[y]) swap(x, y); add(1, n, 1, num[y], num[x], k); return; } inline int real_query(int x, int y){ int tx = -1, ty = -1; int ret = 0; while(Top[x] != Top[y]){ if(High[Top[x]] < High[Top[y]]){ swap(x, y); swap(tx, ty); } node hh = query(1, n, 1, num[Top[x]], num[x]); ret += hh.ans; if(hh.r == tx) ret --; tx = hh.l; x = Fa[Top[x]]; } if(High[x] < High[y]){ swap(x, y); swap(tx, ty); } node hh = query(1, n, 1, num[y], num[x]); ret += hh.ans; if(hh.r == tx) ret --; if(hh.l == ty) ret --; return ret; } } wt; int main(){ int n, m; scanf("%d%d", &n, &m); wt.n = n; wt.init(); for(int i = 1; i <= n; i ++) scanf("%d", &wt.value[i]); for(int i = 1; i < n; i ++){ int x, y; scanf("%d%d", &x, &y); wt.insert(x, y); wt.insert(y, x); } wt.dfs1(1, -1, 1); wt.dfs2(1, -1); char str[2]; int x, y, z; for(int i = 1; i <= m; i ++){ scanf("%s", str); if(str[0] == 'Q'){ scanf("%d%d", &x, &y); printf("%d\n", wt.real_query(x, y)); } else{ scanf("%d%d%d", &x, &y, &z); wt.real_add(x, y, z); } } return 0; }