机器人正逆运动学分析(ABB-IRB2600)

时间:2024-03-26 14:23:15

IRB2600的标准DH法

建立IRB2600的标准DH模型:

机器人正逆运动学分析(ABB-IRB2600)

标准DH法中相邻坐标系之间的齐次变换矩阵:

机器人正逆运动学分析(ABB-IRB2600)

IRB2600的标准DH参数表:

轴号ii αi1\alpha_{i-1} ai1a_{i-1} did_{i} θi\theta_{i}
1 0 0 d1(445)d_{1}(445) θ1\theta_{1}
2 90-90^{\circ} a1(150)a_{1}(150) 0 θ2+90\theta_{2}+90^{\circ}
3 0 a2(700)a_{2}(-700) 0 θ3\theta_{3}
4 9090^{\circ} a3(115)a_{3}(-115) d4(795)d_{4}(795) θ4\theta_{4}
5 90-90^{\circ} 0 0 θ5\theta_{5}
6 9090^{\circ} 0 d6(85)d_{6}(85) θ6\theta_{6}

60T=[nxoxaxpxnyoyaypynzozazpz0001]=10T21T32T43T54T65T(10) ^{0}_{6}T=\begin{bmatrix} n_x & o_x & a_x & p_x\\ n_y & o_y & a_y & p_y\\ n_z & o_z & a_z & p_z\\ 0 & 0 & 0 & 1 \end{bmatrix} ={{^{0}_{1}T}{^{1}_{2}T}{^2_{3}T}{^3_{4}T}{^4_{5}T}{^5_{6}T}} \tag{10}
其中:
10T=[cos(θ1)sin(θ1)00sin(θ1)cos(θ1)00001d10001](11) ^{0}_{1}T=\begin{bmatrix} cos(\theta_{1}) & -sin(\theta_{1}) & 0 & 0\\ sin(\theta_{1}) & cos(\theta_{1}) & 0 & 0\\ 0 & 0 & 1 & d_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{11}

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ ^{1}_{2}T &=…

32T=[cos(θ3)sin(θ3)0a2sin(θ3)cos(θ3)0000100001](13) ^{2}_{3}T=\begin{bmatrix} cos(\theta_{3}) & -sin(\theta_{3}) & 0 & a_{2}\\ sin(\theta_{3}) & cos(\theta_{3}) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{13}

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ ^{3}_{4}T &=\b…

54T=[cos(θ5)sin(θ5)000010sin(θ5)cos(θ5)000001](15) ^{4}_{5}T=\begin{bmatrix} cos(\theta_{5}) & -sin(\theta_{5}) & 0 & 0\\ 0 & 0 & 1 & 0\\ -sin(\theta_{5}) & -cos(\theta_{5}) & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{15}

65T=[cos(θ6)sin(θ6)00001d6sin(θ6)cos(θ6)000001](16) ^{5}_{6}T=\begin{bmatrix} cos(\theta_{6}) & -sin(\theta_{6}) & 0 & 0\\ 0 & 0 & -1 & -d_{6}\\ sin(\theta_{6}) & cos(\theta_{6}) & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{16}

IRB2600的逆运动学解析解推算

推算θ1\theta_{1}:

利用关系式:(T01)1Tend=T12T23T34T45T56(T^1_0)^{-1}T_{end}=T^2_1T^3_2T^4_3T^5_4T^6_5θ1\theta_1进行推算,通过对比矩阵元素之间关系,可按照如下过程求解θ1\theta_1
Tleft(2,4)Tleft(2,3)=Tright(2,4)Tright(2,3)(1) \displaystyle\frac{T_{left}(2,4)}{T_{left}(2,3)}=\frac{T_{right}(2,4)}{T_{right}(2,3)}\tag{1}
化简得到:
θ1=arctanayd6pyaxd6px(2) \displaystyle\theta_{1}=arctan\frac{a_yd_6-p_y}{a_xd_6-p_x}\tag2
对于θ1\theta_1的计算,将会产生两个解。

推算θ2\theta_2θ3\theta_3:

θ2\theta_2θ3\theta_3可以由一个等式关系确定:Tend(T45T56)1=T01T12T23T34T_{end}(T^5_4T^6_5)^{-1}=T^1_0T^2_1T^3_2T^4_3,首先为确定θ2\theta_2关于θ1\theta_1的关系式,通过矩阵中如下元素的等式关系:
Tleft(2,4)=Tright(2,4)(3) \displaystyle T_{left}(2,4)=T_{right}(2,4) \tag3
Tleft(3,4)=Tright(3,4)(4) \displaystyle T_{left}(3,4)=T_{right}(3,4) \tag4
化简得:
a3sin(θ2+θ3)d4cos(θ2+θ3)=a1a2sinθ2pyd6aysinθ1(5) \displaystyle a_3sin(\theta_2+\theta_3)-d_4cos(\theta_2+\theta_3)=a_1-a_2sin\theta_2-\frac{p_y-d_6a_y}{sin\theta_1} \tag5
d4sin(θ2+θ3)+a3cos(θ2+θ3)=d1a2cos(θ2)(pzd6az)(6) d_4sin(\theta_2+\theta_3)+a_3cos(\theta_2+\theta_3)=d_1-a_2cos(\theta_2)-(p_z-d_6a_z) \tag6
为化简需要,令X=sin(θ2+θ3)X=sin(\theta_2+\theta_3)Y=cos(θ2+θ3)Y=cos(\theta_2+\theta_3),通过式(5)和(6)联立起来可以消除XXYY,从而得到:
a32+d42=(k1a2sinθ2)2+(k2a2cosθ2)2(7) \displaystyle {a_3}^2+{d_4}^2=(k_1-a_2sin\theta_2)^2+(k_2-a_2cos\theta_2)^2 \tag7
其中:
k1=a1pyd6aysinθ1(8) \displaystyle k_1=a_1-\frac{p_y-d_6a_y}{sin\theta_1} \tag8
k2=d1(pzd6az)(9) \displaystyle k_2=d_1-(p_z-d_6a_z) \tag9
观察发现,式(7)中只有θ1\theta_1θ2\theta_2未知量,由此可建立θ2\theta_2关于θ1\theta_1的关系表达式,即θ2\theta_2的解析解:
θ2=arcsink12+k22+a22(a32+d42)2a2k12+k22ϕ(10) \displaystyle \theta_2=arcsin \frac{{k_1}^2+{k_2}^2+{a_2}^2-({a_3}^2+{d_4}^2)}{2a_2\sqrt{{k_1}^2+{k_2}^2}}-\phi \tag{10}
sinϕ=k2k12+k22cosϕ=k1k12+k22(11) \displaystyle sin\phi = \frac{k_2}{\sqrt{{k_1}^2+{k_2}^2}} ,cos\phi = \frac{k_1}{\sqrt{{k_1}^2+{k_2}^2}} \tag{11}
对于θ2\theta_2的计算,亦会产生两个解。

以上求出了θ1\theta_1θ2\theta_2,将式(5)(6)中XXYY作为未知数,求出:
X=sin(θ2+θ3)=a3A+d4Ba32+d42(12) \displaystyle X=sin(\theta_2+\theta_3)=\frac {a_3A+d_4B}{{a_3}^2+{d_4}^2} \tag{12}
Y=cos(θ2+θ3)=a3Bd4Aa32+d42(13) \displaystyle Y=cos(\theta_2+\theta_3)=\frac {a_3B-d_4A}{{a_3}^2+{d_4}^2} \tag{13}
其中:
A=k1a2sinθ2B=k2a2cosθ2(14) \displaystyle A = k_1-a_2sin\theta_2 ,B=k_2-a_2cos\theta_2 \tag{14}
结合式(12)(13)(14)和已算出的θ1θ2\theta_1 \theta_2可以计算出关节角θ3\theta_3

推算θ5\theta_{5}θ4\theta_4θ6\theta_6:

经过几次推算尝试,观察矩阵元素的特征(TrightT_{right}矩阵中元素表达式只含θ4θ5θ6\theta_4\theta_5\theta_6且简单,TleftT_{left}矩阵中只含θ1θ2θ3\theta_1\theta_2\theta_3且已求得),因此确定关系式:(T01T12T23)1Tend=T34T45T56(T^1_0T^2_1T^3_2)^{-1}T_{end}=T^4_3T^5_4T^6_5为推导θ4θ5θ6\theta_4\theta_5\theta_6的等式关系,根据矩阵中元素等式关系:
Tleft(2,3)=Tright(2,3)(15) \displaystyle T_{left}(2,3)=T_{right}(2,3) \tag{15}
可以直接求得θ5\theta_5
θ5=arccos(axcos(θ2+θ3)cosθ1+aycos(θ2+θ3)sinθ1azsin(θ2+θ3))(16) \displaystyle \theta_5=arccos(a_xcos(\theta_2+\theta_3)cos\theta_1+a_ycos(\theta_2+\theta_3)sin\theta_1-a_zsin(\theta_2+\theta_3)) \tag{16}
用该解析解计算θ5\theta_5,会得到两个解。

为求得θ4\theta_4,可建立如下关系式:
Tleft(1,3)=Tright(1,3)(17) T_{left}(1,3)=T_{right}(1,3) \tag{17}
Tleft(3,3)=Tright(3,3)(18) T_{left}(3,3)=T_{right}(3,3) \tag{18}
化简得:
sinθ4=oycosθ1oxsinθ1sinθ5(19) \displaystyle sin\theta_4=\frac{o_ycos\theta_1-o_xsin\theta_1}{sin\theta_5} \tag{19}
cosθ4=ozcos(θ2+θ3)oxsin(θ2+θ3)cosθ1oysin(θ2+θ3)sinθ1sinθ5(20) \displaystyle cos\theta_4=\frac{-o_zcos(\theta_2+\theta_3)-o_xsin(\theta_2+\theta_3)cos\theta_1-o_ysin(\theta_2+\theta_3)sin\theta_1}{sin\theta_5} \tag{20}
如此可以确定解θ4\theta_4

利用矩阵元素对应相等关系:
Tleft(2,2)=Tright(2,2)(21) T_{left}(2,2)=T_{right}(2,2) \tag{21}
Tleft(2,1)=Tright(2,1)(22) T_{left}(2,1)=T_{right}(2,1) \tag{22}
化简为:
sinθ6=oxcos(θ2+θ3)cosθ1+oycos(θ2+θ3)sinθ1ozsin(θ2+θ3)sinθ5(23) \displaystyle sin\theta_6=\frac{o_xcos(\theta_2+\theta_3)cos\theta_1+o_ycos(\theta_2+\theta_3)sin\theta_1-o_zsin(\theta_2+\theta_3)}{sin\theta_5} \tag{23}
cosθ6=nzsin(θ2+θ3)nxcos(θ2+θ3)cosθ1nycos(θ2+θ3)sinθ1sinθ5(24) \displaystyle cos\theta_6=\frac{n_zsin(\theta_2+\theta_3)-n_xcos(\theta_2+\theta_3)cos\theta_1-n_ycos(\theta_2+\theta_3)sin\theta_1}{sin\theta_5} \tag{24}
由式(23)(24)可求得θ6\theta_6,其解与θ5\theta_5唯一对应。

——————————————————————————-——————————————————————

JiabinPanJiabinPan 原创文章,禁止抄袭,转载请注明出处,谢谢