import math
import functools
from operator import mul
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
from make_a_video_pytorch.attend import Attend
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def mul_reduce(tup):
return functools.reduce(mul, tup)
def divisible_by(numer, denom):
return (numer % denom) == 0
mlist = nn.ModuleList
# for time conditioning
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
self.theta = theta
self.dim = dim
def forward(self, x):
dtype, device = x.dtype, x.device
assert dtype == torch.float, 'input to sinusoidal pos emb must be a float type'
half_dim = self.dim // 2
emb = math.log(self.theta) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device = device, dtype = dtype) * -emb)
emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j')
return torch.cat((emb.sin(), emb.cos()), dim = -1).type(dtype)
# layernorm 3d
class RMSNorm(nn.Module):
def __init__(self, chan, dim = 1):
super().__init__()
self.dim = dim
self.gamma = nn.Parameter(torch.ones(chan))
def forward(self, x):
dim = self.dim
right_ones = (dim + 1) if dim < 0 else (x.ndim - 1 - dim)
gamma = self.gamma.reshape(-1, *((1,) * right_ones))
return F.normalize(x, dim = dim) * (x.shape[dim] ** 0.5) * gamma
# feedforward
def shift_token(t):
t, t_shift = t.chunk(2, dim = 1)
t_shift = F.pad(t_shift, (0, 0, 0, 0, 1, -1), value = 0.)
return torch.cat((t, t_shift), dim = 1)
class GEGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim = 1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4):
super().__init__()
inner_dim = int(dim * mult * 2 / 3)
self.proj_in = nn.Sequential(
nn.Conv3d(dim, inner_dim * 2, 1, bias = False),
GEGLU()
)
self.proj_out = nn.Sequential(
RMSNorm(inner_dim),
nn.Conv3d(inner_dim, dim, 1, bias = False)
)
def forward(self, x, enable_time = True):
is_video = x.ndim == 5
enable_time &= is_video
if not is_video:
x = rearrange(x, 'b c h w -> b c 1 h w')
x = self.proj_in(x)
if enable_time:
x = shift_token(x)
out = self.proj_out(x)
if not is_video:
out = rearrange(out, 'b c 1 h w -> b c h w')
return out
# best relative positional encoding
class ContinuousPositionBias(nn.Module):
""" from https://arxiv.org/abs/2111.09883 """
def __init__(
self,
*,
dim,
heads,
num_dims = 1,
layers = 2
):
super().__init__()
self.num_dims = num_dims
self.net = nn.ModuleList([])
self.net.append(nn.Sequential(nn.Linear(self.num_dims, dim), nn.SiLU()))
for _ in range(layers - 1):
self.net.append(nn.Sequential(nn.Linear(dim, dim), nn.SiLU()))
self.net.append(nn.Linear(dim, heads))
@property
def device(self):
return next(self.parameters()).device
def forward(self, *dimensions):
device = self.device
shape = torch.tensor(dimensions, device = device)
rel_pos_shape = 2 * shape - 1
# calculate strides
strides = torch.flip(rel_pos_shape, (0,)).cumprod(dim = -1)
strides = torch.flip(F.pad(strides, (1, -1), value = 1), (0,))
# get all positions and calculate all the relative distances
positions = [torch.arange(d, device = device) for d in dimensions]
grid = torch.stack(torch.meshgrid(*positions, indexing = 'ij'), dim = -1)
grid = rearrange(grid, '... c -> (...) c')
rel_dist = rearrange(grid, 'i c -> i 1 c') - rearrange(grid, 'j c -> 1 j c')
# get all relative positions across all dimensions
rel_positions = [torch.arange(-d + 1, d, device = device) for d in dimensions]
rel_pos_grid = torch.stack(torch.meshgrid(*rel_positions, indexing = 'ij'), dim = -1)
rel_pos_grid = rearrange(rel_pos_grid, '... c -> (...) c')
# mlp input
bias = rel_pos_grid.float()
for layer in self.net:
bias = layer(bias)
# convert relative distances to indices of the bias
rel_dist += (shape - 1) # make sure all positive
rel_dist *= strides
rel_dist_indices = rel_dist.sum(dim = -1)
# now select the bias for each unique relative position combination
bias = bias[rel_dist_indices]
return rearrange(bias, 'i j h -> h i j')
# helper classes
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = 64,
heads = 8,
flash = False,
causal = False
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = dim_head * heads
self.attend = Attend(flash = flash, causal = causal)
self.norm = RMSNorm(dim, dim = -1)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
nn.init.zeros_(self.to_out.weight.data) # identity with skip connection
def forward(
self,
x,
rel_pos_bias = None
):
x = self.norm(x)
q, k, v = self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
out = self.attend(q, k, v, bias = rel_pos_bias)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
# main contribution - pseudo 3d conv
class PseudoConv3d(nn.Module):
def __init__(
self,
dim,
dim_out = None,
kernel_size = 3,
*,
temporal_kernel_size = None,
**kwargs
):
super().__init__()
dim_out = default(dim_out, dim)
temporal_kernel_size = default(temporal_kernel_size, kernel_size)
self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size = kernel_size, padding = kernel_size // 2)
self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size = temporal_kernel_size, padding = temporal_kernel_size // 2) if kernel_size > 1 else None
if exists(self.temporal_conv):
nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity
nn.init.zeros_(self.temporal_conv.bias.data)
def forward(
self,
x,
enable_time = True
):
b, c, *_, h, w = x.shape
is_video = x.ndim == 5
enable_time &= is_video
if is_video:
x = rearrange(x, 'b c f h w -> (b f) c h w')
x = self.spatial_conv(x)
if is_video:
x = rearrange(x, '(b f) c h w -> b c f h w', b = b)
if not enable_time or not exists(self.temporal_conv):
return x
x = rearrange(x, 'b c f h w -> (b h w) c f')
x = self.temporal_conv(x)
x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w)
return x
# factorized spatial temporal attention from Ho et al.
class SpatioTemporalAttention(nn.Module):
def __init__(
self,
dim,
*,
dim_head = 64,
heads = 8,
add_feed_forward = True,
ff_mult = 4,
pos_bias = True,
flash = False,
causal_time_attn = False
):
super().__init__()
assert not (flash and pos_bias), 'learned positional attention bias is not compatible with flash attention'
self.spatial_attn = Attention(dim = dim, dim_head = dim_head, heads = heads, flash = flash)
self.spatial_rel_pos_bias = ContinuousPositionBias(dim = dim // 2, heads = heads, num_dims = 2) if pos_bias else None
self.temporal_attn = Attention(dim = dim, dim_head = dim_head, heads = heads, flash = flash, causal = causal_time_attn)
self.temporal_rel_pos_bias = ContinuousPositionBias(dim = dim // 2, heads = heads, num_dims = 1) if pos_bias else None
self.has_feed_forward = add_feed_forward
if not add_feed_forward:
return
self.ff = FeedForward(dim = dim, mult = ff_mult)
def forward(
self,
x,
enable_time = True
):
b, c, *_, h, w = x.shape
is_video = x.ndim == 5
enable_time &= is_video
if is_video:
x = rearrange(x, 'b c f h w -> (b f) (h w) c')
else:
x = rearrange(x, 'b c h w -> b (h w) c')
space_rel_pos_bias = self.spatial_rel_pos_bias(h, w) if exists(self.spatial_rel_pos_bias) else None
x = self.spatial_attn(x, rel_pos_bias = space_rel_pos_bias) + x
if is_video:
x = rearrange(x, '(b f) (h w) c -> b c f h w', b = b, h = h, w = w)
else:
x = rearrange(x, 'b (h w) c -> b c h w', h = h, w = w)
if enable_time:
x = rearrange(x, 'b c f h w -> (b h w) f c')
time_rel_pos_bias = self.temporal_rel_pos_bias(x.shape[1]) if exists(self.temporal_rel_pos_bias) else None
x = self.temporal_attn(x, rel_pos_bias = time_rel_pos_bias) + x
x = rearrange(x, '(b h w) f c -> b c f h w', w = w, h = h)
if self.has_feed_forward:
x = self.ff(x, enable_time = enable_time) + x
return x
# resnet block
class Block(nn.Module):
def __init__(
self,
dim,
dim_out,
kernel_size = 3,
temporal_kernel_size = None,
groups = 8
):
super().__init__()
self.project = PseudoConv3d(dim, dim_out, 3)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()
def forward(
self,
x,
scale_shift = None,
enable_time = False
):
x = self.project(x, enable_time = enable_time)
x = self.norm(x)
if exists(scale_shift):
scale, shift = scale_shift
x = x * (scale + 1) + shift
return self.act(x)
class ResnetBlock(nn.Module):
def __init__(
self,
dim,
dim_out,
*,
timestep_cond_dim = None,
groups = 8
):
super().__init__()
self.timestep_mlp = None
if exists(timestep_cond_dim):
self.timestep_mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(timestep_cond_dim, dim_out * 2)
)
self.block1 = Block(dim, dim_out, groups = groups)
self.block2 = Block(dim_out, dim_out, groups = groups)
self.res_conv = PseudoConv3d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(
self,
x,
timestep_emb = None,
enable_time = True
):
assert not (exists(timestep_emb) ^ exists(self.timestep_mlp))
scale_shift = None
if exists(self.timestep_mlp) and exists(timestep_emb):
time_emb = self.timestep_mlp(timestep_emb)
to_einsum_eq = 'b c 1 1 1' if x.ndim == 5 else 'b c 1 1'
time_emb = rearrange(time_emb, f'b c -> {to_einsum_eq}')
scale_shift = time_emb.chunk(2, dim = 1)
h = self.block1(x, scale_shift = scale_shift, enable_time = enable_time)
h = self.block2(h, enable_time = enable_time)
return h + self.res_conv(x)
# pixelshuffle upsamples and downsamples
# where time dimension can be configured
class Downsample(nn.Module):
def __init__(
self,
dim,
downsample_space = True,
downsample_time = False,
nonlin = False
):
super().__init__()
assert downsample_space or downsample_time
self.down_space = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = 2, p2 = 2),
nn.Conv2d(dim * 4, dim, 1, bias = False),
nn.SiLU() if nonlin else nn.Identity()
) if downsample_space else None
self.down_time = nn.Sequential(
Rearrange('b c (f p) h w -> b (c p) f h w', p = 2),
nn.Conv3d(dim * 2, dim, 1, bias = False),
nn.SiLU() if nonlin else nn.Identity()
) if downsample_time else None
def forward(
self,
x,
enable_time = True
):
is_video = x.ndim == 5
if is_video:
x = rearrange(x, 'b c f h w -> b f c h w')
x, ps = pack([x], '* c h w')
if exists(self.down_space):
x = self.down_space(x)
if is_video:
x, = unpack(x, ps, '* c h w')
x = rearrange(x, 'b f c h w -> b c f h w')
if not is_video or not exists(self.down_time) or not enable_time:
return x
x = self.down_time(x)
return x
class Upsample(nn.Module):
def __init__(
self,
dim,
upsample_space = True,
upsample_time = False,
nonlin = False
):
super().__init__()
assert upsample_space or upsample_time
self.up_space = nn.Sequential(
nn.Conv2d(dim, dim * 4, 1),
nn.SiLU() if nonlin else nn.Identity(),
Rearrange('b (c p1 p2) h w -> b c (h p1) (w p2)', p1 = 2, p2 = 2)
) if upsample_space else None
self.up_time = nn.Sequential(
nn.Conv3d(dim, dim * 2, 1),
nn.SiLU() if nonlin else nn.Identity(),
Rearrange('b (c p) f h w -> b c (f p) h w', p = 2)
) if upsample_time else None
self.init_()
def init_(self):
if exists(self.up_space):
self.init_conv_(self.up_space[0], 4)
if exists(self.up_time):
self.init_conv_(self.up_time[0], 2)
def init_conv_(self, conv, factor):
o, *remain_dims = conv.weight.shape
conv_weight = torch.empty(o // factor, *remain_dims)
nn.init.kaiming_uniform_(conv_weight)
conv_weight = repeat(conv_weight, 'o ... -> (o r) ...', r = factor)
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def forward(
self,
x,
enable_time = True
):
is_video = x.ndim == 5
if is_video:
x = rearrange(x, 'b c f h w -> b f c h w')
x, ps = pack([x], '* c h w')
if exists(self.up_space):
x = self.up_space(x)
if is_video:
x, = unpack(x, ps, '* c h w')
x = rearrange(x, 'b f c h w -> b c f h w')
if not is_video or not exists(self.up_time) or not enable_time:
return x
x = self.up_time(x)
return x
# space time factorized 3d unet
class SpaceTimeUnet(nn.Module):
def __init__(
self,
*,
dim,
channels = 3,
dim_mult = (1, 2, 4, 8),
self_attns = (False, False, False, True),
temporal_compression = (False, True, True, True),
resnet_block_depths = (2, 2, 2, 2),
attn_dim_head = 64,
attn_heads = 8,
condition_on_timestep = True,
attn_pos_bias = True,
flash_attn = False,
causal_time_attn = False
):
super().__init__()
assert len(dim_mult) == len(self_attns) == len(temporal_compression) == len(resnet_block_depths)
num_layers = len(dim_mult)
dims = [dim, *map(lambda mult: mult * dim, dim_mult)]
dim_in_out = zip(dims[:-1], dims[1:])
# determine the valid multiples of the image size and frames of the video
self.frame_multiple = 2 ** sum(tuple(map(int, temporal_compression)))
self.image_size_multiple = 2 ** num_layers
# timestep conditioning for DDPM, not to be confused with the time dimension of the video
self.to_timestep_cond = None
timestep_cond_dim = (dim * 4) if condition_on_timestep else None
if condition_on_timestep:
self.to_timestep_cond = nn.Sequential(
SinusoidalPosEmb(dim),
nn.Linear(dim, timestep_cond_dim),
nn.SiLU()
)
# layers
self.downs = mlist([])
self.ups = mlist([])
attn_kwargs = dict(
dim_head = attn_dim_head,
heads = attn_heads,
pos_bias = attn_pos_bias,
flash = flash_attn,
causal_time_attn = causal_time_attn
)
mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, timestep_cond_dim = timestep_cond_dim)
self.mid_attn = SpatioTemporalAttention(dim = mid_dim, **attn_kwargs)
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, timestep_cond_dim = timestep_cond_dim)
for _, self_attend, (dim_in, dim_out), compress_time, resnet_block_depth in zip(range(num_layers), self_attns, dim_in_out, temporal_compression, resnet_block_depths):
assert resnet_block_depth >= 1
self.downs.append(mlist([
ResnetBlock(dim_in, dim_out, timestep_cond_dim = timestep_cond_dim),
mlist([ResnetBlock(dim_out, dim_out) for _ in range(resnet_block_depth)]),
SpatioTemporalAttention(dim = dim_out, **attn_kwargs) if self_attend else None,
Downsample(dim_out, downsample_time = compress_time)
]))
self.ups.append(mlist([
ResnetBlock(dim_out * 2, dim_in, timestep_cond_dim = timestep_cond_dim),
mlist([ResnetBlock(dim_in + (dim_out if ind == 0 else 0), dim_in) for ind in range(resnet_block_depth)]),
SpatioTemporalAttention(dim = dim_in, **attn_kwargs) if self_attend else None,
Upsample(dim_out, upsample_time = compress_time)
]))
self.skip_scale = 2 ** -0.5 # paper shows faster convergence
self.conv_in = PseudoConv3d(dim = channels, dim_out = dim, kernel_size = 7, temporal_kernel_size = 3)
self.conv_out = PseudoConv3d(dim = dim, dim_out = channels, kernel_size = 3, temporal_kernel_size = 3)
def forward(
self,
x,
timestep = None,
enable_time = True
):
# some asserts
assert not (exists(self.to_timestep_cond) ^ exists(timestep))
is_video = x.ndim == 5
if enable_time and is_video:
frames = x.shape[2]
assert divisible_by(frames, self.frame_multiple), f'number of frames on the video ({frames}) must be divisible by the frame multiple ({self.frame_multiple})'
height, width = x.shape[-2:]
assert divisible_by(height, self.image_size_multiple) and divisible_by(width, self.image_size_multiple), f'height and width of the image or video must be a multiple of {self.image_size_multiple}'
# main logic
t = self.to_timestep_cond(rearrange(timestep, '... -> (...)')) if exists(timestep) else None
x = self.conv_in(x, enable_time = enable_time)
hiddens = []
for init_block, blocks, maybe_attention, downsample in self.downs:
x = init_block(x, t, enable_time = enable_time)
hiddens.append(x.clone())
for block in blocks:
x = block(x, enable_time = enable_time)
if exists(maybe_attention):
x = maybe_attention(x, enable_time = enable_time)
hiddens.append(x.clone())
x = downsample(x, enable_time = enable_time)
x = self.mid_block1(x, t, enable_time = enable_time)
x = self.mid_attn(x, enable_time = enable_time)
x = self.mid_block2(x, t, enable_time = enable_time)
for init_block, blocks, maybe_attention, upsample in reversed(self.ups):
x = upsample(x, enable_time = enable_time)
x = torch.cat((hiddens.pop() * self.skip_scale, x), dim = 1)
x = init_block(x, t, enable_time = enable_time)
x = torch.cat((hiddens.pop() * self.skip_scale, x), dim = 1)
for block in blocks:
x = block(x, enable_time = enable_time)
if exists(maybe_attention):
x = maybe_attention(x, enable_time = enable_time)
x = self.conv_out(x, enable_time = enable_time)
return x
这是一个使用PyTorch实现的基于ResNet架构的视频超分辨率模型。该模型接收一个尺寸为(B, C, T, H, W)的输入视频,其中B是批量大小,C是通道数,T是帧数,H是高度,W是宽度。模型输出一个与输入尺寸相同的的高分辨率视频。
该模型包括以下组件:
1. 一组降采样层,用于减小输入视频的空间维度。
2. 一组残差块,用于逐帧处理视频。
3. 一组注意力机制,用于关注视频的空间和时间维度。
4. 一组上采样层,用于增加视频的空间维度。
5. 一组跳连接,用于连接降采样和上采样路径。
6. 两个卷积层,用于逐帧处理视频并输出高分辨率视频。
该模型可以使用标准的视频超分辨率任务进行训练,例如NTIRE 2023视频超分辨率挑战赛。