用Python实现一个基础的神经网络模型

时间:2021-03-20 01:15:30

目录

前言

一、神经元

1.1一个简单的例子 

1.2编码一个神经元

1.3把神经元组装成网络

二、前馈 

三、训练神经网络

四、总结


前言

        可能一提到神经网络,许多小伙伴就会感觉头大,不知道看眼前的你又是怎样的感受呢?【神经网络】这个词听起来让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。今天我将手把手教你用Python来实现一个基础的神经网络模型,理解其背后的原理。

一、神经元

        首先让我们看看神经网络的基本单位,神经元。神经元接受输入,对其做一些数据操作,然后产生输出。例如,这是一个2-输入神经元:

用Python实现一个基础的神经网络模型

 这里发生了三个事情。首先,每个输入都跟一个权重相乘(红色):

用Python实现一个基础的神经网络模型

 然后,加权后的输入求和,加上一个偏差b(绿色):

用Python实现一个基础的神经网络模型

 激活函数的用途是将一个无边界的输入,转变成一个可预测的形式。常用的激活函数就就是S型函数:

用Python实现一个基础的神经网络模型

S型函数的值域是(0, 1)。简单来说,就是把(−∞, +∞)压缩到(0, 1) ,很大的负数约等于0,很大的正数约等于1。

1.1一个简单的例子 

假设我们有一个神经元,激活函数就是S型函数,其参数如下:

用Python实现一个基础的神经网络模型

w=[0,1] 就是以向量的形式表示w1=0,w2=1。现在,我们给这个神经元一个输入x=[2.3]。我们用点积来表示:

用Python实现一个基础的神经网络模型

 当输入是[2, 3]时,这个神经元的输出是0.999。给定输入,得到输出的过程被称为前馈。

1.2编码一个神经元

让我们来实现一个神经元!用Python的NumPy库来完成其中的数学计算:

import numpy as np

def sigmoid(x):
  # 我们的激活函数: f(x) = 1 / (1 + e^(-x))
  return 1 / (1 + np.exp(-x))

class Neuron:
  def __init__(self, weights, bias):
    self.weights = weights
    self.bias = bias

  def feedforward(self, inputs):
    # 加权输入,加入偏置,然后使用激活函数
    total = np.dot(self.weights, inputs) + self.bias
    return sigmoid(total)

weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4                   # b = 4
n = Neuron(weights, bias)

x = np.array([2, 3])       # x1 = 2, x2 = 3
print(n.feedforward(x))    # 0.9990889488055994

还记得这个数字吗?就是我们前面算出来的例子中的0.999。

1.3把神经元组装成网络

所谓的神经网络就是一堆神经元。这就是一个简单的神经网络:

用Python实现一个基础的神经网络模型

这个网络有两个输入,一个有两个神经元( h1和h2 )的隐藏层,以及一个有一个神经元(o1)的输出层。要注意,o1的输入就是h1和h2的输出,这样就组成了一个网络。 

隐藏层就是输入层和输出层之间的层,隐藏层可以是多层的。

二、前馈 

        我们继续用前面图中的网络,假设每个神经元的权重都是w=[0,1]截距项也相同b=0,激活函数也都是S型函数。分别用h1,h2表示相应的神经元的输出。

当输入x=[2,3时,会得到什么结果?这个神经网络对输入的输出是0.7216,很简单。

        一个神经网络的层数以及每一层中的神经元数量都是任意的。基本逻辑都一样:输入在神经网络中向前传输,最终得到输出。接下来,我们会继续使用前面的这个网络。

接下来我们实现这个神经网络的前馈机制,还是这个图:

用Python实现一个基础的神经网络模型

import numpy as np


class OurNeuralNetwork:
  def __init__(self):
    weights = np.array([0, 1])
    bias = 0

    # 这里是来自前一节的神经元类
    self.h1 = Neuron(weights, bias)
    self.h2 = Neuron(weights, bias)
    self.o1 = Neuron(weights, bias)

  def feedforward(self, x):
    out_h1 = self.h1.feedforward(x)
    out_h2 = self.h2.feedforward(x)

    # o1的输入是h1和h2的输出
    out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))

    return out_o1

network = OurNeuralNetwork()
x = np.array([2, 3])
print(network.feedforward(x)) # 0.7216325609518421

 结果正确,看上去没问题。

三、训练神经网络

import numpy as np

def sigmoid(x):
  # Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
  return 1 / (1 + np.exp(-x))

def deriv_sigmoid(x):
  # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
  fx = sigmoid(x)
  return fx * (1 - fx)

def mse_loss(y_true, y_pred):
  # y_true和y_pred是相同长度的numpy数组。
  return ((y_true - y_pred) ** 2).mean()

class OurNeuralNetwork:
  def __init__(self):
    # 权重,Weights
    self.w1 = np.random.normal()
    self.w2 = np.random.normal()
    self.w3 = np.random.normal()
    self.w4 = np.random.normal()
    self.w5 = np.random.normal()
    self.w6 = np.random.normal()

    # 截距项,Biases
    self.b1 = np.random.normal()
    self.b2 = np.random.normal()
    self.b3 = np.random.normal()

  def feedforward(self, x):
    # X是一个有2个元素的数字数组。
    h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
    h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
    o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
    return o1

  def train(self, data, all_y_trues):
    '''
    - data is a (n x 2) numpy array, n = # of samples in the dataset.
    - all_y_trues is a numpy array with n elements.
      Elements in all_y_trues correspond to those in data.
    '''
    learn_rate = 0.1
    epochs = 1000 # 遍历整个数据集的次数

    for epoch in range(epochs):
      for x, y_true in zip(data, all_y_trues):
        # --- 做一个前馈(稍后我们将需要这些值)
        sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
        h1 = sigmoid(sum_h1)

        sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
        h2 = sigmoid(sum_h2)

        sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
        o1 = sigmoid(sum_o1)
        y_pred = o1

        # --- 计算偏导数。
        # --- Naming: d_L_d_w1 represents "partial L / partial w1"
        d_L_d_ypred = -2 * (y_true - y_pred)

        # Neuron o1
        d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
        d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
        d_ypred_d_b3 = deriv_sigmoid(sum_o1)

        d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
        d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)

        # Neuron h1
        d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
        d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
        d_h1_d_b1 = deriv_sigmoid(sum_h1)

        # Neuron h2
        d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
        d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
        d_h2_d_b2 = deriv_sigmoid(sum_h2)

        # --- 更新权重和偏差
        # Neuron h1
        self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
        self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
        self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1

        # Neuron h2
        self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
        self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
        self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2

        # Neuron o1
        self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
        self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
        self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3

      # --- 在每次epoch结束时计算总损失 
      if epoch % 10 == 0:
        y_preds = np.apply_along_axis(self.feedforward, 1, data)
        loss = mse_loss(all_y_trues, y_preds)
        print("Epoch %d loss: %.3f" % (epoch, loss))

# 定义数据集
data = np.array([
  [-2, -1],  # Alice
  [25, 6],   # Bob
  [17, 4],   # Charlie
  [-15, -6], # Diana
])
all_y_trues = np.array([
  1, # Alice
  0, # Bob
  0, # Charlie
  1, # Diana
])

# 训练我们的神经网络!
network = OurNeuralNetwork()
network.train(data, all_y_trues)

 随着网络的学习,损失在稳步下降。

用Python实现一个基础的神经网络模型

现在我们可以用这个网络来预测性别了:

# 做一些预测
emily = np.array([-7, -3]) # 128 磅, 63 英寸
frank = np.array([20, 2])  # 155 磅, 68 英寸
print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F
print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

四、总结

搞定了一个简单的神经网络,快速回顾一下:

  • 介绍了神经网络的基本结构——神经元;

  • 在神经元中使用S型激活函数;

  • 神经网络就是连接在一起的神经元;

  • 构建了一个数据集,输入(或特征)是体重和身高,输出(或标签)是性别;

  • 学习了损失函数和均方差损失;

  • 训练网络就是最小化其损失;

  • 用反向传播方法计算偏导;

  • 用随机梯度下降法训练网络;

接下来你还可以:

  • 用机器学习库实现更大更好的神经网络,例如TensorFlow、Keras和PyTorch;

  • 在浏览器中实现神经网络;

  • 其他类型的激活函数;

  • 其他类型的优化器;

  • 学习卷积神经网络,这给计算机视觉领域带来了革命;

  • 学习递归神经网络,常用语自然语言处理;