Description
![BZOJ3294: [Cqoi2011]放棋子 BZOJ3294: [Cqoi2011]放棋子](https://image.shishitao.com:8440/aHR0cDovL3d3dy5seWRzeS5jb20vSnVkZ2VPbmxpbmUvdXBsb2FkLzIwMTMwOS9mZi5qcGc%3D.jpg?w=700&webp=1)
Input
输入第一行为两个整数n, m, c,即行数、列数和棋子的颜色数。第二行包含c个正整数,即每个颜色的棋子数。所有颜色的棋子总数保证不超过nm。
Output
输出仅一行,即方案总数除以 1,000,000,009的余数。
Sample Input
4 2 2
3 1
3 1
Sample Output
8
HINT
N,M<=30 C<=10 总棋子数<=250
我们发现因为不能同行同列颜色不同的格子,所以我们相当于是将整张棋盘的行列分给这C种棋子。
这样我们设g[n][m][k]表示前k种棋子放完,占据了n行m列的方案数。g[n][m][k]=sum(g[n-x][n-y][k-1]*C(x,n)*C(y,n)*f[x][y][k])。
其中f[x][y][k]表示第i种棋子刚好放在了x行y列棋盘的方案数,要求每行每列都至少有一个棋子。
不难发现f数组可以用容斥原理来计算,枚举有多少行列没放棋子,转移方程也很简单。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
typedef long long ll;
const int maxn=;
const int maxm=;
const int mod=;
ll C[][],f[maxn][maxn][],g[maxn][maxn][];
int n,m,c,A[maxn];
void init() {
C[][]=;
rep(i,,) {
C[i][]=C[i][i]=;
rep(j,,i-) C[i][j]=(C[i-][j-]+C[i-][j])%mod;
}
}
int main() {
n=read();m=read();c=read();
rep(i,,c) A[i]=read();
init();
rep(i,,n) rep(j,,m) rep(k,,c) if(i<=A[k]&&j<=A[k]&&i*j>=A[k]){
f[i][j][k]=C[i*j][A[k]];ll& ans=f[i][j][k];
rep(i1,,i) rep(j1,,j) if(i1!=i||j1!=j) (ans-=(f[i1][j1][k]*C[i][i1]%mod)*C[j][j1])%=mod;
ans=(ans%mod+mod)%mod;
}
g[][][]=;
rep(i,,n) rep(j,,m) rep(k,,c) {
ll& ans=g[i][j][k];
rep(i1,,i) rep(j1,,j) (ans+=(((f[i1][j1][k]*C[i][i1]%mod)*C[j][j1])%mod)*g[i-i1][j-j1][k-])%=mod;
}
ll ans=;
rep(i,,n) rep(j,,m) (ans+=C[n][i]*C[m][j]%mod*g[i][j][c]%mod)%=mod;
printf("%lld\n",ans);
return ;
}