概率DP(放棋子)Domination

时间:2022-12-24 02:03:14

题意:https://zoj.pintia.cn/problem-sets/91827364500/problems/91827369874

给你n*m的棋盘,我们定义放满棋盘是:任意一行一列至少有一个棋子。

问你放满棋盘需要棋子的期望数。

思路:

我们先算出用x个棋子放满棋盘的概率,然后求Sigma就可以了

概率DP(放棋子)Domination

我们可以转换一下放棋子的方式,在任意一个地方放棋子,我们都可以把这个位置尽可能的移到左上角。

dp【k】【i】【j】是放了k个棋子,已经有 i 行 j 列满了的概率;

注意:放最后一个的时候不需要加放在 i,j区域里的概率(既然都放里面了,那就已经放满了)。

 #define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#include <cstdio>//sprintf islower isupper
#include <cstdlib>//malloc exit strcat itoa system("cls")
#include <iostream>//pair
#include <fstream>//freopen("C:\\Users\\13606\\Desktop\\草稿.txt","r",stdin);
#include <bitset>
//#include <map>
//#include<unordered_map>
#include <vector>
#include <stack>
#include <set>
#include <string.h>//strstr substr
#include <string>
#include <time.h>//srand(((unsigned)time(NULL))); Seed n=rand()%10 - 0~9;
#include <cmath>
#include <deque>
#include <queue>//priority_queue<int, vector<int>, greater<int> > q;//less
#include <vector>//emplace_back
//#include <math.h>
//#include <windows.h>//reverse(a,a+len);// ~ ! ~ ! floor
#include <algorithm>//sort + unique : sz=unique(b+1,b+n+1)-(b+1);+nth_element(first, nth, last, compare)
using namespace std;//next_permutation(a+1,a+1+n);//prev_permutation
#define fo(a,b,c) for(register int a=b;a<=c;++a)
#define fr(a,b,c) for(register int a=b;a>=c;--a)
#define mem(a,b) memset(a,b,sizeof(a))
#define pr printf
#define sc scanf
#define ls rt<<1
#define rs rt<<1|1
typedef long long ll;
void swapp(int &a,int &b);
double fabss(double a);
int maxx(int a,int b);
int minn(int a,int b);
int Del_bit_1(int n);
int lowbit(int n);
int abss(int a);
//const long long INF=(1LL<<60);
const double E=2.718281828;
const double PI=acos(-1.0);
const int inf=(<<);
const double ESP=1e-;
const int mod=(int)1e9+;
const int N=(int)1e6+; double dp[][][]; int main()
{
// freopen("C:\\Users\\13606\\Desktop\\草稿.txt","r",stdin);
int T;
sc("%d",&T);
while(T--)
{
int n,m;
sc("%d%d",&n,&m);
dp[][][]=1.0;
for(int k=;k<=n*m;++k)
{
for(int i=;i<=n;++i)
{
for(int j=;j<=m;++j)
{
dp[i][j][k]=dp[i-][j][k-]*(n+-i)*j/(n*m+-k)
+dp[i][j-][k-]*(m+-j)*i/(n*m+-k)
+dp[i-][j-][k-]*(n+-i)*(m+-j)/(n*m+-k);
if(i<n||j<m)
dp[i][j][k]+=dp[i][j][k-]*(i*j+-k)/(n*m+-k);
}
}
}
double ans=;
for(int i=;i<=n*m;++i)
ans+=i*dp[n][m][i];
pr("%.10lf\n",ans);
}
return ;
} /**************************************************************************************/ int maxx(int a,int b)
{
return a>b?a:b;
} void swapp(int &a,int &b)
{
a^=b^=a^=b;
} int lowbit(int n)
{
return n&(-n);
} int Del_bit_1(int n)
{
return n&(n-);
} int abss(int a)
{
return a>?a:-a;
} double fabss(double a)
{
return a>?a:-a;
} int minn(int a,int b)
{
return a<b?a:b;
}