uva 563 - Crimewave 网络流

时间:2023-03-08 19:08:50

题目链接

有一个n*m的图, 里面有q个人, 每个点只能走一次, 问这q个人是否都能够走出这个图。

uva 563 - Crimewave 网络流

对于每个人, 建边(s, u, 1), 对于每个边界的格子, 建边(u', t, 1), 对于其他格子, 建边(u, u', 1), 以及(u', v, 1), v是它四周的格子。

对于求出的最大流, 如果等于人数, 则可以走出。

 #include<bits/stdc++.h>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, a, n) for(int i = a; i<n; i++)
#define ull unsigned long long
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 2e6+;
int num, q[maxn*], head[maxn*], dis[maxn*], s, t;
struct node
{
int to, nextt, c;
node(){}
node(int to, int nextt, int c):to(to), nextt(nextt), c(c){}
}e[maxn*];
int bfs() {
mem(dis);
int st = , ed = ;
dis[s] = ;
q[ed++] = s;
while(st<ed) {
int u = q[st++];
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(!dis[v]&&e[i].c) {
dis[v] = dis[u]+;
if(v == t)
return ;
q[ed++] = v;
}
}
}
return ;
}
int dfs(int u, int limit) {
int cost = ;
if(u == t)
return limit;
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(e[i].c&&dis[v] == dis[u]+) {
int tmp = dfs(v, min(e[i].c, limit-cost));
if(tmp>) {
e[i].c -= tmp;
e[i^].c += tmp;
cost += tmp;
if(cost == limit)
break;
} else {
dis[v] = -;
}
}
}
return cost;
}
int dinic() {
int ans = ;
while(bfs()) {
ans += dfs(s, inf);
}
return ans;
}
void add(int u, int v, int c) {
e[num] = node(v, head[u], c); head[u] = num++;
e[num] = node(u, head[v], ); head[v] = num++;
}
void init() {
mem1(head);
num = ;
}
int main()
{
int T, m, n, x, y, q;
cin>>T;
while(T--) {
init();
scanf("%d%d%d", &n, &m, &q);
int nm = n*m;
s = *nm, t = s+;
for(int i = ; i<=q; i++) {
scanf("%d%d", &x, &y);
x--, y--;
add(s, x*m+y, );
}
for(int i = ; i<n; i++) {
for(int j = ; j<m; j++) {
int ij = i*m+j;
add(ij, ij+nm, );
if(i==||j==||i==n-||j==m-) {
add(ij+nm, t, );
} else {
for(int k = ; k<; k++) {
x = i + dir[k][];
y = j + dir[k][];
add(ij+nm, x*m+y, );
}
}
}
}
if(dinic() == q)
cout<<"possible"<<endl;
else
cout<<"not possible"<<endl;
}
}