CF 149D Coloring Brackets 区间dp ****

时间:2022-06-27 23:24:08

给一个给定括号序列,给该括号上色,上色有三个要求

1、只有三种上色方案,不上色,上红色,上蓝色

2、每对括号必须只能给其中的一个上色

3、相邻的两个不能上同色,可以都不上色

求0-len-1这一区间内有多少种上色方案,很明显的区间DP

dp[l][r][i][j]表示l-r区间两端颜色分别是i,j的方案数

0代表不上色,1代表上红色,2代表上蓝色

对于l-r区间,有3种情况

1、if(l+1==r) 说明就只有一对,那么dp[l][r][0][1]=1;
        dp[l][r][1][0]=1;
        dp[l][r][0][2]=1;
        dp[l][r][2][0]=1;

2、if(l与r是配对的)

递归(l+1,r-1)

状态转移dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod; dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;

dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod; dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;

3、if(l与r不配对)

dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 705
#define mod 1000000007
char s[N];
int match[N];
int tmp[N];
long long dp[N][N][][];
void getmatch(int len)
{
int p=;
for(int i=; i<len; i++)
{
if(s[i]=='(')
tmp[p++]=i;
else
{
match[i]=tmp[p-];
match[tmp[p-]]=i;
p--;
}
}
}
void dfs(int l,int r)
{
if(l+==r)
{
dp[l][r][][]=;
dp[l][r][][]=;
dp[l][r][][]=;
dp[l][r][][]=;
return ;
}
if(match[l]==r)
{
dfs(l+,r-);
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
if(j!=)
dp[l][r][][]=(dp[l][r][][]+dp[l+][r-][i][j])%mod;
if(i!=)
dp[l][r][][]=(dp[l][r][][]+dp[l+][r-][i][j])%mod;
if(j!=)
dp[l][r][][]=(dp[l][r][][]+dp[l+][r-][i][j])%mod;
if(i!=)
dp[l][r][][]=(dp[l][r][][]+dp[l+][r-][i][j])%mod;
}
}
return ;
}
else
{
int p=match[l];
dfs(l,p);
dfs(p+,r);
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
for(int k=;k<;k++)
{
for(int q=;q<;q++)
{
if(!((k== && q==) || (k== && q==)))
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+][r][q][j])%mod)%mod;
}
}
}
}
}
}
int main()
{
while(scanf("%s",s)!=EOF)
{
int len=strlen(s);
getmatch(len);
memset(dp,,sizeof(dp));
dfs(,len-);
long long ans=;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
ans=(ans+dp[][len-][i][j])%mod;
}
}
printf("%ld\n",ans);
}
return ;
}