http://poj.org/problem?id=2955
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
p[i][j]表示从i到j个可以组成的括号最大值,则若dp[i+1][j]已取到最大值,则dp[i][j] 的取值为 dp[i+1][j] , 或若 s[i] 与 第i+1个到第j个中某个括号匹配(假定为第k个),则有dp[i][j] = max(dp[i+1][j], dp[i+1][k-1] + 2 + dp[k+1][j]) (注:要考虑k == i+1的情况要分开讨论)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; const int INF = 0x3f3f3f3f;
#define N 105 char s[N];
int dp[N][N]; int main()
{
while(scanf("%s", s), strcmp(s, "end"))
{
int i, j, k, len=strlen(s)-; memset(dp, , sizeof(dp)); for(i=len-; i>=; i--)
{
for(j=i+; j<=len; j++)
{
dp[i][j] = dp[i+][j]; for(k=i+; k<=j; k++)
{
if((s[i]=='(' && s[k]==')') || (s[i]=='[' && s[k]==']'))
{
if(k==i+) dp[i][j] = max(dp[i][j], dp[k+][j]+);
else dp[i][j] = max(dp[i][j], dp[i+][k-]+dp[k+][j]+);
}
}
}
} printf("%d\n", dp[][len]);
}
return ;
}
记忆化索搜:
(感觉记忆化搜索只是把在递归中已经计算过的值给记录下来, 不知道是否理解有悟,慢慢用吧!!!)
#include<stdio.h>
#include<string.h>
#include<stdlib.h> #define N 105
#define max(a,b) (a>b?a:b) char s[N];
int dp[N][N]; int OK(int L, int R)
{
if((s[L]=='[' && s[R]==']') || (s[L]=='(' && s[R]==')'))
return ;
return ;
} int DFS(int L, int R)
{
int i; if(dp[L][R]!=-)
return dp[L][R];
if(L+==R)
return OK(L,R);
if(L>=R)
return ; dp[L][R] = DFS(L+, R); for(i=L+; i<=R; i++)
{
if(OK(L,i))
dp[L][R] = max(dp[L][R], DFS(L+, i-)+DFS(i+, R)+);
}
return dp[L][R];
} int main()
{
while(scanf("%s", s), strcmp(s, "end"))
{
memset(dp, -, sizeof(dp));
printf("%d\n", DFS(, strlen(s)-));
}
return ;
}