POJ 1141 Brackets Sequence (区间DP)

时间:2022-12-18 08:17:05

题意:给定一个括号序列,让你添加最少的括号,使得所有的括号都匹配。

析:首先用DP来把这个最少的找出来,然后再打印出解,dp[i][j]表示从 i 到 j 所要添加最少的数。

注意有空行的数据。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 5;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
char s[maxn];
int dp[maxn][maxn];

bool judge(int i, int j){
    if(s[i] == '(' && s[j] == ')')  return true;
    if(s[i] == '[' && s[j] == ']')  return true;
    return false;
}

void print(int i, int j){
    if(i > j)  return ;
    if(i == j){
        if(s[i] == '(' || s[i] == ')')  printf("()");
        else printf("[]");
        return ;
    }
    int ans = dp[i][j];
    if(judge(i, j) && ans == dp[i+1][j-1]){
        printf("%c", s[i]);  print(i+1, j-1); printf("%c", s[j]);
        return ;
    }
    for(int k = i; k < j; ++k) if(ans == dp[i][k]+dp[k+1][j]){
        print(i, k); print(k+1, j);
        return ;
    }
}

int main(){
    while(gets(s) != NULL){
        n = strlen(s);
        memset(dp, INF, sizeof dp);
        for(int i = 0; i < n; ++i)  dp[i][i] = 1, dp[i+1][i] = 0;
        for(int i = n-2; i >= 0; --i)
            for(int j= i+1; j < n; ++j){
                dp[i][j] = INF;
                if(judge(i, j))  dp[i][j] = dp[i+1][j-1];
                for(int k = i; k < j; ++k)
                    dp[i][j] = Min(dp[i][j], dp[i][k]+dp[k+1][j]);
            }

        print(0, n-1);
        printf("\n");
    }
    return 0;
}