题目链接:http://poj.org/problem?id=1061
就是找到满足 (X+mt)-(Y+nt) = Lk 的 t 和 k 即可
上式可化简为 (n-m)t + Lk = X-Y;满足ax+by=c的形式 所以我们可以用扩展欧几里德求t和k;
由于上式有解当且仅当 c % gcd(a, b) = 0;
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <queue>
#include <stack>
#include <math.h> using namespace std; #define met(a, b) memset(a, b, sizeof(a))
#define N 10053
#define INF 0x3f3f3f3f
const int MOD = 1e9+; typedef long long LL; LL gcd(LL a, LL b)
{
return b == ? a : gcd(b, a%b);
} void ex_gcd(LL a, LL b, LL &x, LL &y)
{
if(b == )
{
x = ;
y = ;
return ;
}
ex_gcd(b, a%b, x, y);
LL t = x;
x = y;
y = t - a/b*y;
} int main()
{
LL X, Y, L, n, m;
while(scanf("%lld %lld %lld %lld %lld", &X, &Y, &m, &n, &L) != EOF)
{
LL a, b, x, y, c; a = n-m, b = L, c = X-Y; LL r = gcd(a, b); if(c%r)
{
puts("Impossible");
continue;
} a = a/r;
b = b/r;
c = c/r;
///之所以让他们都除以r是为了让ab互质,然后结果就相当于是x和y的c倍; ex_gcd(a, b, x, y);///此时的a和b互质,求得就是ax+by=1;的解最终的解要*c; x = x*c; x = x % b;///要求的是最小的解,所以要对b求余; while(x <= )
{
x += b;
}
printf("%lld\n", x);
}
return ;
}