青蛙的约会<数论,extgcd>

时间:2022-09-02 12:56:21

青蛙的约会

题意:

在一个圆上有一个零刻度点,公青蛙和母青蛙分别在A点和B点<不同的位

置>,他们每秒行走的距离分别是m和n,圆的周长是L。问题是这两个青

蛙能不能相遇,若能在什么时候相遇?

解:

<对于初学者来说,解得过程是漫长的>假设可以相遇,相遇的时间是x,并且相遇的时候快的比慢的多了圈,则可得方程:(A+m*X)-(B+n*X)=Y*L:里得算法。

什么是扩展欧几里得?

extgcd:

如何求aX+bY=C的一个解?令d=gcd(a,b);等式两边同时除d,a/d*X+b/d*Y=C/d.这里有一个pint,a、b除以d一定是整数,但是c不一定,如果c/d不是整数,那么说明青蛙不能相遇,无解。易知道,a*X0+b*y0=d,<一定有解>有解(x0,y0)

定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使d = a*k + b*l。

。两边同时乘上C/d.得a*(C/d*X0)+b*(C/d*y0)=c。得一解,x=C/d*X0,y=C/d*y0。扩展欧几里得的作用是什么呢?求x0,y0,和d。

void extgcd(LL a,LL b,LL&d,LL &x,LL &y)
{
if(!b){d=a;x=1,y=0;}
else{
extgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}

具体是这样:递归

由于gcd(a, b) = gcd(b, a%b) ,有ax0 + by0 = gcd(a, b) = gcd(b, a%b) = bx1 + (a%b)y1,而a%b又可以写成a-a/b*b,所以=bx1 + (a-a/b*b)y1 = ay1 + b(x1-a/b*y1),所以如果我们求出gcd(b, a%b) = bx1 + (a%b)y1的x1和y1,那么通过观察就可以求出x0 = y1,y0 = (x1 - a/b*y1)。那我们怎样求x1和y1呢?当然是求x2和y2了,做法一样的。一直求到gcd(an, 0) = an*xn + 0 * yn,这时令xn=1,yn=0就完事了,就可以求xn-1和yn-1,然后xn-2和yn-2,然后一直求到x0和y0了。

定理二:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

定理三:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

上面说过,这个该死的方程等价于ax + by = c,如果有解,两边同除以d,就有a/d * x + b/d * y = c/d,即a/d * x ≡ c/d (mod b/d),显然gcd(a/d, b/d) = 1,所以由定理二知道x在[0, b/d - 1]上有唯一解。所以ax + by = c的x在[0, b/d - 1]上有唯一解,即ax ≡ c (mod b)在[0, b/d - 1]上有唯一解,得证!

如果得到ax ≡ c (mod b)的某一特解X,那么我令r = b/gcd(a, b),可知x在[0, r-1]上有唯一解,所以我用x = (X % r + r) % r就可以求出最小非负整数解x了!(X % r可能是负值,此时保持在[-(r-1), 0]内,正值则保持在[0, r-1]内。加上r就保持在[1, 2r - 1]内,所以再模一下r就在[0, r-1]内了)

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long LL;
void extgcd(LL a,LL b,LL&d,LL &x,LL &y)
{
if(!b){d=a;x=1,y=0;}
else{
extgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int main ()
{
LL x,y,m,n,L,d,r,X,Y;
while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L))
{
extgcd(n-m,L,d,X,Y);r=L/d;
if((X-Y)%d)printf("Impossible\n");
else printf("%lld\n",((X-Y)/d*x%r+r)%r);
}
return 0;
}

来源+整理

青蛙的约会<数论,extgcd>的更多相关文章

  1. ACM&colon; POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  2. POJ 1061 青蛙的约会 数论水题

    http://poj.org/problem?id=1061 傻逼题不多说 (x+km) - (y+kn) = dL 求k 令b = n-m ; a = x - y ; 化成模线性方程一般式 : Lx ...

  3. 数论练习(5)——青蛙的约会(扩gcd)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122502   Accepted: 26015 Descript ...

  4. 数学--数论--POJ 1061青蛙的约会 (扩展欧几里得算法)

    青蛙的约会 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问 ...

  5. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  6. poj 1061青蛙的约会

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 90083   Accepted: 16257 Descripti ...

  7. poj1061 青蛙的约会 扩展欧几里德的应用

    这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...

  8. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax&plus;by&equals;c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

  9. POJ青蛙的约会

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 114412   Accepted: 23446 Descript ...

随机推荐

  1. Javascript&colon;来一个AJAX封装函数

    前不久换工作了,最近一直在出差,忙得跟狗一样,所以博客都荒废许久了. 最近的工作中涉及到大量的ajax操作,本来该后台做的事也要我来做了.而现在使用的ajax函数是一个后台人员封装的—-但他又是基于 ...

  2. MySql学习&lpar;六&rpar; —— 数据库优化理论&lpar;二&rpar; —— 查询优化技术

    逻辑查询优化包括的技术 1)子查询优化  2)视图重写  3)等价谓词重写  4)条件简化  5)外连接消除  6)嵌套连接消除  7)连接消除  8)语义优化 9)非SPJ优化 一.子查询优化 1. ...

  3. 转:Struts标签checkbox使用总结&lpar;默认选择设置&rpar;

    在使用struts标签html:checkbox 的时候,如何让checkbox框默认是选中的,一般情况 下都是当formbean里面该property的值和标签上value给定的值相等的时候,生成的 ...

  4. 解读ECMAScript 6箭头函数

    箭头函数是ECMAScript 6最受关注的更新内容之一.它引入了一种用「箭头」(=>)来定义函数的新语法,它…它碉堡了~.箭头函数与传统的JavaScript函数主要区别在于以下几点: 对 t ...

  5. &OpenCurlyDoubleQuote;易信”今日正式更新至V1&period;1版

    热门移动通讯社交应用“易信”今日正式更新至V1.1版,目前用户已可在苹果AppStore和各大Android商店下载.新版本主要包括三大变化:开通公众平台.提供外部分享.强化社交安全,此外包含好友关系 ...

  6. SpringMVC整合freeMarker实现页面静态化&plus;SpringMVC配置多视图

    一.背景 1.什么是FreeMarker FreeMarker是一个模板引擎,一个基于模板生成文本输出的通用工具,使用纯Java编写 FreeMarker被设计用来生成HTML Web页面,特别是基于 ...

  7. Java位运算符浅析

    在学习源码中,发现有大量使用位运算符,这样做的目的是为了节约内存开销和加快计算效率. 位运算符,这个”位”代表这什么? 位:二进制位简称“位”,是二进制记数系统中表示小于2的整数的符号,一般用1或 0 ...

  8. 散列算法-SHA

    一种生成信息摘要的算法.主要用于数据一致性和完整性的校验 SHA算法分很多版本,最大的分类是SHA-1和SHA-2.SHA-2包括很多子版本,SHA-224,SHA-256,SHA-384,SHA-5 ...

  9. SQL优化&vert;Java面试题

    转载:https://www.cnblogs.com/Jacck/p/8030455.html 数据库的优化问题 一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂 ...

  10. 【Unity Shader】渲染管线

    流程概述 应用程序阶段 应用程序阶段,使用高级编程语言(C.C++.JAVA 等)进行开发,主要和CPU.内存打交道,诸如碰撞检测.场景图建立.空间八叉树更新.视锥裁剪等经典算法都在此阶段执行.在该阶 ...