python opencv —— 背景提取(MOG、KNN)、识别与检测(Haar Cascade)

时间:2021-10-20 15:19:16
  • 注意 opencv 的坐标轴,x 轴向右,和 width 对应,y 轴向下,和 height 对应;

1. MOG2 与 KNN

  • MOG:Mixture of Gaussian

    import cv2
    
    cap = cv2.VideoCapture('./data/video/768x576.avi')
    knn_sub = cv2.createBackgroundSubtractorKNN()
    mog2_sub = cv2.createBackgroundSubtractorMOG2()
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        mog_sub_mask = mog2_sub.apply(frame)
        knn_sub_mask = knn_sub.apply(frame)
    
        cv2.imshow('original', frame)
        cv2.imshow('MOG2', mog_sub_mask)
        cv2.imshow('KNN', knn_sub_mask)
    
        key = cv2.waitKey(30) & 0xff
        if key == 27 or key == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

2. 识别与检测

  • Haar Cascade

    import cv2
    import numpy as np
    
    
    # haar 级联分类器,opencv 源文件中data文件夹下会有
    
    
    # https://github.com/opencv/opencv/tree/master/data/haarcascades
    
    face_cascade = cv2.CascadeClassifier(
        './data/classifiers/haarcascade_frontalface_default.xml')
    eye_cascade = cv2.CascadeClassifier('./data/classifiers/haarcascade_eye.xml')
    
    cap = cv2.VideoCapture(0)
    
    while True:
        ret, img = cap.read()
        if not ret:
            break
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        for (x, y, w, h) in faces:
            cv2.rectangle(img, (x, y), (x+w, y+h), color=(255, 0, 0), thickness=2)
            roi_gray = gray[y:y+h, x:x+w]
            roi_color = img[y:y+h, x:x+w]
            eyes = eye_cascade.detectMultiScale(roi_gray)
    
            try:
                ex, ey, ew, eh = eyes[0]
                cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), 
                    color=(0, 255, 0), thickness=2)
                ex1, ey1, ew1, eh1 = eyes[1]
                cv2.rectangle(roi_color, (ex1, ey1), (ex1+ew1, ey1+eh1), 
                    color=(0, 255, 0), thickness=2)
    
            except IndexError:
                print('')
    
        cv2.imshow('me', img)
        key = cv2.waitKey(30)
        if key == 27 or key == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()