题目链接:https://www.jisuanke.com/contest/3004?view=challenges
题目大意:
1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的。每次添边的权值要最小。
2.不能构成negative-weighted loop,negative-weighted loop指的是循环加权和为负,即从一个顶点出发在回到这个顶点的经过路径的权值和必须是 >= 0的。所以让你在u,v顶点天一条边,可以计算v - > u的最短路,然后加个负号取反。然后再加边执行下一次询问。需要进行6次SPFA。
3.dijsktra不能处理负边权,这里的边是带负的,所以用spfa,并且注意边权范围是 -1e9~1e9,所以两点之间最短路可能会超int范围,所以dis数组要开long long型。
代码如下:
#include<stdio.h>
#include<string.h>
#include<queue>
#define mem(a, b) memset(a, b, sizeof(a))
#define LL long long
const int inf = 0x3f3f3f3f;
using namespace std; int n, m;
int head[], cnt, vis[];
LL dis[]; struct Edge
{
int to, next;
LL w;
}edge[]; void add(int a, int b, LL c)
{
edge[++ cnt].to = b;
edge[cnt].w = c;
edge[cnt].next = head[a];
head[a] = cnt;
} void spfa(int st, int ed)
{
mem(vis, ), mem(dis, inf);
queue<int> Q;
Q.push(st);
dis[st] = ;
vis[st] = ;
while(!Q.empty())
{
int a = Q.front();
Q.pop();
vis[a] = ;
for(int i = head[a]; i != -; i = edge[i].next)
{
int to = edge[i].to;
if(dis[to] > dis[a] + edge[i].w)
{
dis[to] = dis[a] + edge[i].w;
if(!vis[to])
{
vis[to] = ;
Q.push(to);
}
}
}
}
} int main()
{
int T;
scanf("%d", &T);
while(T --)
{
scanf("%d%d", &n, &m);
cnt = , mem(head, -);
for(int i = ; i <= m; i ++)
{
int a, b;
LL c;
scanf("%d%d%lld", &a, &b, &c);
add(a, b, c);
}
for(int i = ; i <= ; i ++)
{
int st, ed;
scanf("%d%d", &st, &ed);
spfa(ed, st);
printf("%lld\n", -dis[st]);
add(st, ed, -dis[st]);
}
}
return ;
}