给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示1号点到n号点的最短距离。
如果路径不存在,则输出”impossible”。
数据范围
1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
对bellman_ford优化
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> using namespace std; typedef pair<int, int> PII; const int N = 1e5 + 10; int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N]; void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
} int spfa()
{
memset(dist,0x3f,sizeof dist);
dist[1] = 0; //定义队列存储所有待更新的点
queue<int> q;
q.push(1);//1号点放入队列
st[1] = true;//表示当前这个点是不是在队列当中,防止队列当中存储重复的点 while(q.size()){//队列不空
int t = q.front();
q.pop(); st[t] = false; //更新t的所有的邻边
for(int i = h[t];i != -1;i = ne[i]){
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!st[t])
{
q.push(j);
st[j] = true;
}
}
} } if(dist[n] == 0x3f3f3f3f) return -1;
else return dist[n]; } int main()
{
scanf("%d%d", &n, &m); memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
} int t = spfa();
if(t == -1) cout << "impossible";
else
cout << spfa() << endl; return 0;
}