题目链接:https://vjudge.net/problem/UVA-11324
题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相互可达也可以)。
思路:同一个强联通分量的结点集中任意两个结点u和v满足题的要求足:要么u可以到达v,要么v可以到达u(相互可达也可以)。把强联通分量收缩点后得到scc图,让每个scc结点的权值等于他的结点数,则求scc图上权最大的路径。拓扑dp,也可以直接bfs,但是要建立一个新的起点,连接所有入度为0的结点。
代码:
#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=2e5+,INF=0x3f3f3f3f,MOD=1e9+;
map<int,vector<int> >G;
int pre[MAXN],lowlink[MAXN],sccno[MAXN],dfs_color,scc_cut;
stack<int>S;
map<int,vector<int> >NG;
int deg[MAXN];
int in[MAXN];
void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_color;
S.push(u);
for(int i=; i<G[u].size(); i++)
{
int v=G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],lowlink[v]);
}
if(lowlink[u]==pre[u])
{
scc_cut++;
while(!S.empty())
{
int x=S.top();
S.pop();
sccno[x]=scc_cut;
deg[scc_cut]++;
if(x==u) break;
}
}
}
void find_scc(int n)
{
dfs_color=scc_cut=;
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
memset(deg,,sizeof(deg));
for(int i=; i<=n; i++)
if(!pre[i]) dfs(i);
}
void re_build(int n)
{
for(int i=; i<=scc_cut; i++) in[i]=,NG[i].clear();
for(int u=; u<=n; u++)
{
for(int i=; i<G[u].size(); i++)
{
int v=G[u][i];
if(sccno[u]==sccno[v]) continue;
in[sccno[v]]++;
NG[sccno[u]].push_back(sccno[v]);
}
}
for(int i=; i<=n; i++) G[i].clear();
}
queue<int>q;
int ans[MAXN];
void topsort()
{
memset(ans,,sizeof(ans));
for(int i=; i<=scc_cut; i++)
if(in[i]==) ans[i]=deg[i],q.push(i);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=; i<NG[u].size(); i++)
{
int v=NG[u][i];
ans[v]=max(ans[v],ans[u]+deg[v]);
in[v]--;
if(in[v]==) q.push(v);
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=; i<=m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
}
find_scc(n);
re_build(n);
topsort();
int Max=;
for(int i=; i<=scc_cut; i++)
Max=max(Max,ans[i]);
cout<<Max<<endl;
}
return ;
}
tarjan缩点+拓扑dp