高博-《视觉SLAM十四讲》

时间:2021-08-16 06:52:44

0 讲座

(1)SLAM定义

对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM)

高博-《视觉SLAM十四讲》

单目:不知道尺度信息

双目:知道尺度信息,但测量范围根据预定的基线相关

RGBD:知道深度信息,但是深度信息对距离也有要求

 

vSLAM(视觉SLAM)

高博-《视觉SLAM十四讲》 

摄像机(主要)+IMU+超声波避障传感器

2016年之后已经可以跑一点DEMO程序了(在刚体的和静态的环境下)

 

视觉SLAM的几个模块

高博-《视觉SLAM十四讲》

传感器数据(图像数据采集点云)

视觉里程计(估计摄像机参数)

后端(对摄像机参数优化,因为摄像机误差累积跟IMU一样,因此需要对其优化)

建图(二维图和三维图)

回环检测(若能回来)

 

2. 视觉里程计

高博-《视觉SLAM十四讲》

1. 提取特征点:FAST, SIFT, SURF, ORB

2. 匹配:KNN

3. 估计ego-运动

缺点:

1. 特征点必须存在,不能是一堵白墙或者运动太快晃得太厉害,SLAM是有这些假设条件的

2. 解不一定是最优解

 

ego运动估计

高博-《视觉SLAM十四讲》

假设相机矩阵已知求解运动的R(旋转)、t()、X(平移)

问题:

1. 不一定有最优解 因为方程非凸

 

求解最优解的方法

高博-《视觉SLAM十四讲》

代数法(解析法)

迭代法(数值法)

 

单目三维点重建

高博-《视觉SLAM十四讲》

尺度问题

假设两幅图之间移动了一个距离1,而如果不移动呢距离就为0了怎么办

 

高博-《视觉SLAM十四讲》

直接法

不提特征点直接求差的平方,这是在慢速运动、平滑运动以及光的条件改变不大的时候,计算量大

书籍:《视觉SLAM十四讲:从理论到实践》高翔

书籍:《视觉SLAM十四讲:从理论到实践》书籍配套代码

slambook

This is the code written for my new book about visual SLAM. It will come in April 2017. I am reviewing the context and codes right now.

It is highy recommended to download the code and run it in you machine because you can learn more and even modify it by doing so. In this repo, the code is stored by chapters like "ch2" and "ch4". Note that chapter 9 is a project so I stored it in the "project" directory.

If you have any questions about the code, please add an issue so I can solve it. Contact me for more information: gaoxiang12 dot mails dot tsinghua dot edu dot cn.

These codes are under MIT license. You don't need permission to use it or change it. But I recommed to cite this book if you are doing academic works.

Citation will be added as soon as the book is officially published.

Please cite: Xiang Gao, Tao Zhang, Qinrui Yan, Yi Liu, 14 Lectures on Visual SLAM: From Theory to Practice, Publishing House of Electronics Industry, 2017.

  • ch1 Preface
  • ch2 Overview of SLAM & linux, cmake
  • ch3 Rigid body motion & Eigen
  • ch4 Lie group and Lie Algebra & Sophus
  • ch5 Cameras and Images & OpenCV
  • ch6 Non-linear optimization & Ceres, g2o
  • ch7 Feature based Visual Odometry
  • ch8 Direct (Intensity based) Visual Odometry
  • ch9 Project
  • ch10 Back end optimization & Ceres, g2o
  • ch11 Pose graph and Factor graph & g2o, gtsam
  • ch12 Loop closure & DBoW3
  • ch13 Dense reconstruction & REMODE, Octomap