R语言多线程运算操作(解决R循环慢的问题)

时间:2022-06-01 17:51:03

已经大半年没有更新博客了。。最近都跑去写分析报告半年没有R

这次记录下关于R循环(百万级以上)死慢死慢的问题,这个问题去年就碰到过,当时也尝试过多线程,but failed......昨天试了下,终于跑通了,而且过程还挺顺利

step1

先查下自己电脑几核的,n核貌似应该选跑n个线程,线程不是越多越好,线程个数和任务运行时间是条开口向下的抛物线,最高点预计在电脑的核数上。

detectCores( )检查当前电脑可用核数 我的是4所以step2选的是4

?
1
2
library(parallel)
cl.cores <- detectCores()

step 2

多线程计算

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
setwd("C:\\Users\\siyuanmao\\Documents\\imdada\\0-渠道投放和新人券联动模型\\测算")
options(scipen=3)  ##取消科学计数法
channel_ad_ios_data<-seq(0,50000,5000)
channel_ad_android_data<-seq(0,100000,10000)
library(parallel)
func <- function(n){#n=1
  result_data<-read.csv("发券方案.csv",stringsAsFactors=FALSE)
  total_coupon_solution_data<-read.csv("结果表框架.csv",stringsAsFactors=FALSE)
  coupon_solution_data<-subset(result_data,solution== paste('方案',n,sep=""))
  
  for (i in 1:11){#i=3
    coupon_solution_data$channel_ad_cost[3]<-5000*(i-1)
    
    for (j in 1:11){#j=5
      coupon_solution_data$channel_ad_cost[4]<-10000*(j-1)
      solution_mark<-paste('方案',n,i,j,sep="-")
      coupon_solution_data$solution<-solution_mark
      
      total_coupon_solution_data<-rbind(total_coupon_solution_data,coupon_solution_data)
    }
  }
  print(solution_mark)
  return(total_coupon_solution_data)
}
#func(10)
system.time({
x <- 1:7776
cl <- makeCluster(4) # 初始化四核心集群
results <- parLapply(cl,x,func) # lapply的并行版本
res.df <- do.call('rbind',results) # 整合结果
stopCluster(cl) # 关闭集群
})
df=as.data.frame(res.df)

原来非多线程的时候,我预计要跑12个小时以上,电脑发出呼呼~~的响声,查了下Python循环会快点,然后改为python版(已经很久没有用了,连个range都不会写,摸索了大半天才改好,但是速度还是慢==),于是改成多线程,运行25分钟就出结果了~~

补充:R语言 多线程

parallel包

包的安装

?
1
2
install.packages("parallel")
library(parallel)

包中常用函数

detectCores() 检查当前的可用核数

clusterExport() 配置当前环境

makeCluster() 分配核数

stopCluster() 关闭集群

parLapply() lapply()函数的并行版本

其实R语言本来就是一门向量化语言,如果是对于一个向量的操作,使用apply函数一族能获得比较高的效率,相比于for循环,这种高效来自于:

用C实现了for循环

减少对于data.frame等数据结构等不必要的拷贝

但是很多时候,如果想更快的话,光apply函数一族还不足够,这时候就能用上多线程。

R语言parallel包可以帮助实现多线程。

parLapply的简单代码实战

检查当前核数

?
1
2
3
4
cl.cores <- detectCores()
#结果
> cl.cores
[1] 8

启动集群和关闭集群

?
1
2
3
cl <- makeCluster(4) # 初始化四核心集群
###并行任务
stopCluster(cl) # 关闭集群

parLapply执行多线程计算

?
1
2
3
4
5
#定义计算平方函数
square <- function(x)
{
    return(x^2)
}
?
1
2
3
4
5
6
7
8
9
#利用并行计算计算平方函数
num <- c(1:3)
cl <- makeCluster(4) # 初始化四核心集群
results <- parLapply(cl,num,square)#调用parLapply并行计算平方函数
final <- do.call('c',results)#整合结果
stopCluster(cl) # 关闭集群
#结果
> final
[1] 1,4,9

思考:在如此小的计算方式下,开4个核计算是否比开一个核要快

答案:当然是不一定,因为涉及到调度方式等额外开销,所以不一定快,因为真正并行起作用的地方在于大数据量的计算。

时间开销对比

两段对比代码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#定义计算平方函数
square <- function(x)
{
   #########
   #一段冗余代码增加执行时间
    y = 2*x
    if(y <300)
    {z = y}
    else
    {z = x}
   ##########  
    return(x^2)
}
num <- c(1:10000000)
?
1
2
3
4
5
6
7
8
9
10
#并行计算
print(system.time({
    cl <- makeCluster(4) # 初始化四核心集群
    results <- parLapply(cl,num,square)#调用parLapply并行计算平方函数
final <- do.call('c',results)#整合结果
stopCluster(cl) # 关闭集群
}))
#结果
用户  系统  流逝
 7.89  0.27 19.01
?
1
2
3
4
5
6
7
8
#普通计算
print(system.time({
    results <- lapply(num,square)
    final <- do.call('c',results)#整合结果
}))
#结果
用户  系统  流逝
29.74  0.00 29.79

显然在数据量比较大的时候,并行计算的时间几乎就是于核数反比。不过,也不是多开几个核就好,注意内存很容易超支的,每个核都分配相应的内存,所以要注意内存开销。出现内存问题的时候,需要检查是否代码是否合理,R语言版本(64位会比32位分配的内存大),核分配是否合理。

上一级环境中变量的引入

R语言里边对于环境变量有着有趣的定义,一层套一层,这里不做深入展开。

类似于在c语言函数中使用全局变量,R在执行并行计算的时候,如果需要计算的函数出现在全局(上一级),那么就需要声明引入这个变量,否则将会报错。

?
1
2
3
4
5
6
7
#定义计算幂函数
base = 2
square <- function(x)
{
    return(x^base)
}
num <- c(1:1000000)
?
1
2
3
4
5
6
7
8
#利用并行计算计算幂函数
cl <- makeCluster(4) # 初始化四核心集群
results <- parLapply(cl,num,square)#调用parLapply并行计算平方函数
final <- do.call('c',results)#整合结果
stopCluster(cl) # 关闭集群
#结果报错
Error in checkForRemoteErrors(val) :
  4 nodes produced errors; first error: 找不到对象'base'
?
1
2
3
4
5
6
7
8
9
#利用并行计算计算幂函数
cl <- makeCluster(4) # 初始化四核心集群
clusterExport(cl,"base",envir = environment())
results <- parLapply(cl,num,square)#调用parLapply并行计算平方函数
final <- do.call('c',results)#整合结果
stopCluster(cl) # 关闭集群
#结果
> final
[1] 1,4,9,16,25.......

foreach包

除了parallel包以外,还有针对并行for循环的foreach包,foreach()的使用也与parLapply()类似,两个功能也类似,其中遇到的问题也类似。

包的安装

?
1
2
install.packages("foreach")
library(parallel)

foreach的使用

?
1
2
3
4
5
#定义计算幂函数
square <- function(x)
{
    return(x^2)
}

非并行情况的使用:

参数中的combine就是整合结果的函数,可以是c,可以是rbind,也可以是+等

?
1
2
3
4
results = foreach(x = c(1:3),.combine = 'c') %do% square(x)
#结果
> results
[1] 1,4,9

并行情况的使用:

注意并行情况的时候,需要与parallel包进行配合,引入library(doParallel)。同时%do%需要改成%dopar%。另外与parallel包不一样的是,需要多加一句registerDoParallel(cl)来注册核进行使用。

?
1
2
3
4
cl <- makeCluster(4)
registerDoParallel(cl)
results = foreach(x = c(1:100000),.combine = 'c') %dopar% square(x)
stopCluster(cl)

上一级环境中变量的引入

同parallel包并行计算前需要clusterExport()来引入全局变量一样,foreach也同样需要声明,不同的是,foreach声明方式直接写在foreach()的参数export里边。

?
1
2
3
4
5
6
7
8
9
10
#定义计算幂函数
base = 2
square <- function(x)
{
    return(x^base)
}
cl <- makeCluster(4)
registerDoParallel(cl)
results = foreach(x = c(1:100000),.combine = 'c',.export ='base' ) %dopar% square(x)
stopCluster(cl)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://blog.csdn.net/u011454283/article/details/77920833