逻辑回归
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
> ###############逻辑回归
> setwd("/Users/yaozhilin/Downloads/R_edu/data")
> accepts<-read.csv("accepts.csv")
> names(accepts)
[1] "application_id" "account_number" "bad_ind" "vehicle_year" "vehicle_make"
[6] "bankruptcy_ind" "tot_derog" "tot_tr" "age_oldest_tr" "tot_open_tr"
[11] "tot_rev_tr" "tot_rev_debt" "tot_rev_line" "rev_util" "fico_score"
[16] "purch_price" "msrp" "down_pyt" "loan_term" "loan_amt"
[21] "ltv" "tot_income" "veh_mileage" "used_ind"
> accepts<-accepts[complete.cases(accepts),]
> select<-sample(1:nrow(accepts),length(accepts$application_id)*0.7)
> train<-accepts[select,]###70%用于建模
> test<-accepts[-select,]###30%用于检测
> attach(train)
> ###用glm(y~x,family=binomial(link="logit"))
> gl<-glm(bad_ind~fico_score,family=binomial(link = "logit"))
> summary(gl)
Call:
glm(formula = bad_ind ~ fico_score, family = binomial(link = "logit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.0794 -0.6790 -0.4937 -0.3073 2.6028
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 9.049667 0.629120 14.38 <2e-16 ***
fico_score -0.015407 0.000938 -16.43 <2e-16 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2989.2 on 3046 degrees of freedom
Residual deviance: 2665.9 on 3045 degrees of freedom
AIC: 2669.9
Number of Fisher Scoring iterations: 5
|
多元逻辑回归
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
> ###多元逻辑回归
> gls<-glm(bad_ind~fico_score+bankruptcy_ind+age_oldest_tr+
+ tot_derog+rev_util+veh_mileage,family = binomial(link = "logit"))
> summary(gls)
Call:
glm(formula = bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr +
tot_derog + rev_util + veh_mileage, family = binomial(link = "logit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2646 -0.6743 -0.4647 -0.2630 2.8177
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.205e+00 7.433e-01 11.039 < 2e-16 ***
fico_score -1.338e-02 1.092e-03 -12.260 < 2e-16 ***
bankruptcy_indY -3.771e-01 1.855e-01 -2.033 0.0421 *
age_oldest_tr -4.458e-03 6.375e-04 -6.994 2.68e-12 ***
tot_derog 3.012e-02 1.552e-02 1.941 0.0523 .
rev_util 3.763e-04 5.252e-04 0.717 0.4737
veh_mileage 2.466e-06 1.381e-06 1.786 0.0741 .
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2989.2 on 3046 degrees of freedom
Residual deviance: 2601.4 on 3040 degrees of freedom
AIC: 2615.4
Number of Fisher Scoring iterations: 5
> glss<-step(gls,direction = "both")
Start: AIC=2615.35
bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog +
rev_util + veh_mileage
Df Deviance AIC
- rev_util 1 2601.9 2613.9
<none> 2601.3 2615.3
- veh_mileage 1 2604.4 2616.4
- tot_derog 1 2605.1 2617.1
- bankruptcy_ind 1 2605.7 2617.7
- age_oldest_tr 1 2655.9 2667.9
- fico_score 1 2763.8 2775.8
Step: AIC=2613.88
bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog +
veh_mileage
Df Deviance AIC
<none> 2601.9 2613.9
- veh_mileage 1 2604.9 2614.9
+ rev_util 1 2601.3 2615.3
- tot_derog 1 2605.7 2615.7
- bankruptcy_ind 1 2606.1 2616.1
- age_oldest_tr 1 2656.9 2666.9
- fico_score 1 2773.2 2783.2
|
1
2
3
4
5
6
7
8
9
10
11
|
> #出来的数据是logit,我们需要转换
> train$pre<-predict(glss,train)
> #出来的数据是logit,我们需要转换
> train$pre<-predict(glss,train)
> summary(train$pre)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.868 -2.421 -1.671 -1.713 -1.011 2.497
> train$pre_p<-1/(1+exp(-1*train$pre))
> summary(train$pre_p)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00763 0.08157 0.15823 0.19298 0.26677 0.92395
|
1
2
3
4
5
|
#逻辑回归不需要检测扰动项,但需要检测共线性
> library(car)
> vif(glss)
> fico_score bankruptcy_ind age_oldest_tr tot_derog veh_mileage
>1.271283 1.144846 1.075603 1.423850 1.003616
|
到此这篇关于R语言逻辑回归深入讲解的文章就介绍到这了,更多相关R语言逻辑回归内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://www.cnblogs.com/ye20190812/p/13925635.html